Design of an Optical Sensor for Aluminium(III) Determination Based on Immobilization of Eriochrome Cyanine R on a Triacetylcellulose

Document Type: Original research article


Department of Chemistry, College of Sciences, Yasouj University, P. O. Box 7591-874934, Yasouj, Iran


A selective optical sensor based on immobilization of Eriochrome Cyanine R for the determination of Al(III) ions in aqueous solution has been developed. The method is based on the spectrophotometric measurement of complex Eriochrome Cyanine R-aluminium at 537 nm. The sensing membrane is made of a triacetylcellulose film containing Eriochrome Cyanine R colorimetric reagent immobilized as an ion pair with methyltrioctylammonium chloride. The response of the sensor is based on the Eriochrome Cyanine R absorbance decrease by the coordination of Al(III) ions. At pH= 6.0, the linear dynamic rangeis varied from 3.22×10-8 to 4.10×10-5 mol L-1 with a detection limit of 1.2× 10-8 mol L-1. A dynamic working range, detection limit, sensitivity, selectivity and the response time were discussed in detail. The response was pH dependent. The membrane responds to Al(III) ions irreversibly by changing color from pink to blue. The membrane was regenerated in less than 30 seconds with 0.1 mol L-1 EDTA solution and was ready for further measurements. The response time of the sensor was within 16 min depending on the concentration of Al (III) ions. The sensor response was found to have a repeatability and reproducibility of 1.62% and 3%, respectively. The sensor provides appropriate selectivity to Al(III) ions over transition metal cations, including Co(II), Ni(II), Fe(III), Cu(II) and Zn(II). The sensor has been used for the determination of Al(III) ions in potable water and aluminium – magnesium syrup.


 [1] I.M. Steinberg, A. Lobnik and O.S. Wolfbeis, Characterisation of an optical sensor membrane based on the metal ion indicator Pyrocatechol Violet, Sens. Actuators B 90 (2003) 230–235.

[2] P.F. Good, C.W. Olanow and D.P. Perl, Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson's disease: a LAMMA study, Brain Res . 593 (1992) 343-346.

[3] M. Kawahara, K. Muramoto, K. Kobayashi, H. Mori and Y. Kuroda, Aluminum promotes the aggregation of Alzheimer's amyloid betaprotein in vitro, Biochem. Biophys. Res. Commun. 198 (1994) 531-535.

[4] J.L. Lin, M.T. Kou and M.L. Leu, Effect of long-term low-dose aluminum-containing agents on hemoglobin synthesis in patients with chronic renal insufficiency, Nephron 74 (1996) 33-38.

[5] S.R. Paik, J.H. Lee, D.H. Kim, C.S. Chang and J. Kim, Aluminum-induced structural alterations of the precursor of the non-A beta component of Alzheimer's disease amyloid, Arch. Biochem. Biophys. 344 (1997) 325327.

[6] T.P. Flaten, Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water, Brain Res. Bull. 55 (2001) 187-196.

[7] L. Sombra, M. Luconi, M.F. Silva, R.A. Olsina and L. Fernandez, Spectrophotometric determination of trace aluminium content in parenteral solutions by combined cloud point preconcentration-flow injection analysis, Analyst 126 (2001) 1172–1176.

[8] S. Polizzi, E. Pira, M. Ferrara, M. Bugiani, A. Papaleo, R. Albera and S. Palmi, Neurotoxic effects of aluminium among foundry workers and Alzheimer's disease, Neurotoxicology 23 (2002) 761-774.

[9] K. Popinska, J. Kierkuo, M. Lyszkowska, J. Socha, E. Pietraszek, W. Kmiotek and J. Ksiazyk, Aluminum contamination of parenteral nutrition additives, amino acid solutions, and lipid emulsions, Nutrition 15 (1999) 683-686.

[10]  H. Lian, Y. Kang, S. Bi, Y. Arkin, D. Shao, D. Li, Y. Chen, L. Dai, N. Gan and L. Tian, Direct determination of trace aluminum with quercetin by reversed-phase high performance liquid chromatography, Talanta 62 (2004) 43-50.

[11]  G. Albendin, M.P. Manuel-Vez, C. Moreno and M.R. Garcia-Vargas, Reverse flowinjection manifold for spectrofluorimetric determination of aluminum in drinking water, Talanta 60 (2003) 425-431.

[12]  A.L. Balbo, V.C.D. Orto, S. Sobral and I. Rezzano, Linear Scan Stripping Voltammetry
at Glassy-Carbon Based Thin Mercury Film Electrodes for Determination of Trace Aluminium in Dialysis Fluids, Anal. Lett. 31 (1998) 2717-2728.

[13]  A. Safavi and M. Sadeghi, Design and evaluation of a thorium (IV) selective optode, Anal. Chim. Acta 567 (2006) 184–188.

[14]  M. Shamsipur, S. Ershad, A. Yari, H. Sharghi and A.R. Salimi, Hydroxythioxanthones as suitable neutral ionophores for the preparation of PVC-membrane potentiometric sensors for Al(III) ion, Anal. Sci. 20 (2004) 301-306.

[15]  A. Shokrollahi, M. Ghaedi, M.S. Niband and H.R. Rajabi, Selective and sensitive spectrophotometric method for determination of sub-micro-molar amounts of aluminium ion, J. Hazard. Mater 151 (2008) 642–648.

[16]  Z. Ying-Quan, Z. Lin and L. Jun-Yi, Spectrophotometric determination of aluminium with chlorophosphonazo I, Talanta 30 (1983) 291–293.

[17]  M. Chamsaz, M.H. Arbab Zavar and M.S. Hosseini, Flotation Spectrophotometric Determination of Aluminium with Alizarin, Anal. Lett. 33 (2000) 1625-1633.

[18]  U.T. Hill, Direct Photometric Determination of Aluminum in Iron Ores-Corrections, Anal. Chem. 28 (1956) 191-191.

[19]  U.T. Hill, Direct Photometric Determination of Aluminum in Iron Ores, Anal. Chem. 28 (1956) 1419-1424.

[20]  U.T. Hill, Direct Spectrophotometric Determination of Aluminum in Steel, Spelter and Iron Ores, Anal. Chem. 38 (1966) 654656.

[21] W.R. Seitz, Optical Ion Sensing Fiber Optic Chemical Sensors Biosensors II, in: O.S. Wolfbeis (Ed.), CRC Press, Bocaraton, FL, (1991) pp. 1–19. 

[22]  I. Oehme and O.S. Wolfbeis, Optical sensors for determination of heavy metal ions, Microchim. Acta 126 (1997) 177–192.

[23]  M.R. Ganjali, M. Hosseini, M. Hariri, F. Faridbod and P. Norouzi, Novel erbium (III) -selective fluorimetric bulk optode, Sens. Actuators B 142 (2009) 90–96. 

[24]  G. Absalan, M. Asadi, S. Kamran, S. Torabi and L. Sheikhian, Design of a cyanide ion optode based on immobilization of a new Co(III) Schiff base complex on triacetylcellulose membrane using room temperature ionic liquids as modifiers, Sens. Actuators B 147 (2010) 31–36.

[25]  M. Ahmad and R. Narayanaswamy, A flowcell optosensor for monitoring aluminium (III) based on immobilised eriochrome cyanine R (ECR) and reflectance spectrophotometry, Sci. Total Environ. 163 (1995) 221-227.

[26]  S. Abbasi, A. Farmany, M.B. Gholivand, A. Naghipour, F. Abbasi and H. Khani, Kineticspectrophotometry method for determination of ultra trace amounts of aluminum in food samples, Food Chem. 116 (2009) 1019-1023.

[27]  M.M. Bordbar, H. Khajehsharifi and A. Solhjoo, PC-ANN assisted to the determination of Vanadium (IV) ion using an optical sensor based on immobilization of Eriochorome Cyanine R on a triacetylcellulose, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 151 (2015) 225-231.

[28]  M. Ahmad and R. Narayanaswamy, Fibre optic reflectance sensor for the determination of aluminium (III) in aqueous environment, Anal. Chim. Acta 291 (1994) 255-260.

[29]  N. Pourreza and M. Behpour, Column Preconcentration of Aluminum Using Eriochrome Cyanine R and Methyltrioctylammonium Chloride Adsorbent Supported on Naphthalene with Subsequent Spectrophotometric Determination, Microchem. J. 63 (1999) 250–256.

[30]  S. Rastegarzadeh, N. Pourreza and I. Saeedi, An optical chemical sensor for thorium (IV) determination based on thorin, J. Hazared. Mater. 173 (2010) 110–114.

[31]  B. Kuswandi and R. Narayanaswamy, Characterisation of a Hg(II) ion optrode based on Nafion®-1-(2-thiazolylazo)-2naphthol composite thin films, J. Environ. Monit. 1 (1999) 109-114.

[32]  S. Sadeghi and S. Doosti, Uranyl ionselective optical test strip, Dyes Pigments 80 (2009) 125-129.

[33]  M.M.F. Choi, X. Jun Wu and Y. Rong Li, Optode Membrane for Determination of Nicotine via Generation of Its Bromoethane Derivative, Anal. Chem. 71 (1999) 13421349.

[34]  M.K. Amini, T. Momeni-Isfahani, J.H. Khorasani and M. Pourhossein, Development of an optical chemical sensor based on 2-(5Bromo-2-pyridylazo)-5-(diethylamino) phenol in Nafion for determination of nickel ion, Talanta 63 (2004) 713–720.

[35]  M. Ahmad and R. Narayanaswamy, Development of an optical fiber Al (III) sensor based on immobilised chrome azurol S, Talanta 42 (1995) 1337-1344.

[36]  C.T. Driscoll, W.D. Schechler, H. Sigel and A. Sigel, Metal Ions in Biological Systems, 24, Marcel Dekker, New York (1978).

[37]  M. Lerchi, E. Bakker, B. Rusterholz and W. Simon, Lead-selective bulk optodes based on
neutral ionophores with subnanomolar detection limits, Anal. Chem. 65 (1992) 1534–1540.

[38]  M. Lerchi, E. Reitter and W. Simon, Uranyl ion-selective optode based on neutral ionophores, Fresenius' J. Anal. Chem. 348 (1994) 272-276.

[39]  O. Dinten, U.E. Spichiger, N. Chaniotakis, P. Gehrig, B. Rusterholz, W.E. Morf and W. Simon, Lifetime of neutral-carrier-based liquid membranes in aqueous samples and blood and the lipophilicity of membrane components, Anal. Chem. 63 (1991) 596-603.

[40]  F. Abbasitabar, V. Shahabadi, M. Shamsipur and M. Akhond, Development of an optical sensor for determination of zinc by application of PC-ANN, Sens. Actuators B 156 (2011) 181-186.

[41]  M. Wang-bai and Z. Zhu-jun, The Investigation of a Fiber Optical Aluminum Sensor Using Poly (Vinyl Alcohol) Gel as a Substrate, Chem. J Chinese U. 12 (1991) 1304-1307.

[42]  L.A. Saari and W.R. Seltz, Immobilized morin as fluorescence sensor for determination of aluminum (III), Anal. Chem. 55 (1983) 667-670.

[43]  M. Ahmad and R. Narayanaswamy, Optical fibre Al (III) sensor based on solid surface fluorescence measurement, Sens. Actuators B 81 (2002) 259-266.

[44]  K. Carroll, F.V. Bright and G.M, Hieftje, M. Fiber-optic time-resolved fluorescence sensor for the simultaneous determination of aluminum(III) and gallium(III) or indium(III), Anal. Chem. 61 (1989) 17681772.

[45]  S.C. Warren-Smith, S. Heng, H. EbendorffHeidepriem, A.D. Abell and T.M. Monro, Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber, Langmuir 27 (2011) 5680–5685.