N-[4-(Dimethyl Amino) Benzylidene] Benzoxide as a New Luminophor in Peroxyoxalate Chemiluminescence System for the Determination of Sucrose

Document Type: Original research article


Department of Chemistry, Payame Noor University (PNU), P.O. BOX, 19395-3697, Tehran, Iran


In this work, the first, intense and efficient POCL arising from the reaction of bis (2, 4, 6-trichlrophenyl) oxalate (TCPO) with hydrogen peroxide in the presence of N-[4-(dimethyl amino) benzylidene] benzoxide (Nitrone) as a new luminophor has been reported. The relationships between the chemiluminescence intensity and concentrations of all reagents were investigated. The quenching effect of some cations and compounds such as Fe3+, Co2+, Cu2+, Mn2+, Ni2+, Cd2+ ions and imidazole, L-Histidine, L-Tyrosine, D-(+)-Lactose, and  D-(+)-Sucrose, on the POCL system were investigated. The KQ values were calculated from Stern–Volmer equation. It was found that the KQ values decreases in the order:  Co2+ > Fe3+ > Cu2+ > Mn2+ > Ni2+ > Cd2+ and D-(+)-Lactose > Imidazole > L-Tyrosine > L-Histidine > D-(+)-Sucrose. Dynamic range and detection limit of all quencher were determined. Sucrose has the best dynamic range and low detection limit, so sucrose considered as an analyte and then the total sucrose extracted from sugar beet as real sample was measured by this proposed method. Dynamic range, detection limit, mean intra-day and inter-day relative standard deviation (RSD%) were 6.67×10-7- 1.20×10-5, 1.0×10-8, 5.62%, 7.25% (n=3) respectively. For accuracy determination, the percentage recovery was found 97.4%- 104.3%. All interferences were investigated and Co2+, D-(+)-Lactose had most interference. Sucrose percentage of the measured sample was 17 percent. These results are comparable with the results of the standard method to determine the sucrose and is acceptable.


[1] A.R. Bowie, M.G. Sanders and P.J. Worsfold, Analytical Applications of Liquid Phase Chemiluminescence Reactions — A Review, J. Biolumin. Chemilumin. 11 (1996) 61-90. 

[2] P.J.M. Kwakman and U.A.T. Brinkman, Peroxyoxalate chemiluminescence detection in liquid chromatography, Anal. Chim. Acta 266 (1992) 175-192. 

[3] A. Nishitani, Y. Tsukamoto, S. Kanda and K. Imai, Determination of the fluorescent drugs dipyridamole and benzydamine in rat plasma by liquid chromatography with peroxyoxalate chemiluminescence detection, Anal. Chim. Acta 251 (1991) 247-253. 

[4] B. Yan, S.W. Lewis, P.J. Worsfold, J.S. Lancaster and A. Gachanja, Procedures for the enhancement of selectivity in liquid phase chemiluminescence detection. Anal. Chim. Acta 250 (1991) 145-155. 

[5] A.M. Garcia-Campana. Chemiluminescence in Analytical Chemistry: Taylor & Francis, (2001).

[6] C. Gooijer and N.H. Velthorst, Low-level interferences in peroxyoxalate chemiluminescence, Biomed. Chromatogr. 4 (1990) 92-95. 

[7] M.M. Nakamura, S.A. Saraiva and N. Coichev, Minireview: A Caritical Review of the Transition Metal Ions Influence on Peroxyoxalate Chemiluminescence, Anal. Lett. 33 (2000) 391-404. 

[8] M. Shamsipur and M.J. Chaichi, Quenching effect of triethylamine on peroxyoxalate chemiluminescence in the presence of 7amino-4-trifluoromethylcumarin, Spectrochim. Acta, Pt A: Mol Biomol Spectrosc. 57 (2001) 2355-2358.

[9]  K. Nakashima, M. Wada, N. Kuroda, S. Akiyama and K. Imai, High-Performance Liquid Chromatographic Determination of Hydrogen Peroxide with Peroxyoxalate Chemiluminescence Detection, J. Liq. Chromatogr. 17 (1994) 2111-2126. 

[10] M. Stigbrand, E. Ponten and K. Irgum, 1,1'Oxalyldiimidazole as Chemiluminescence Reagent in the Determination of Low Hydrogen Peroxide Concentrations by Flow Injection Analysis, Anal. Chem. 66 (1994) 1766-1770. 

[11] C.L.R. Catherall, T.F. Palmer and R.B. Cundall, Chemiluminescence from reactions of bis(pentachloro-phenyl)oxalate, hydrogen peroxide and fluorescent compounds. Role of the fluor and nature of chemielectronic process(es), J. Chem. Soc. Faraday Trans2: Mol. Chem. Phys. 80 (1984) 837-849. 

[12] A.G. Hadd, A.L. Robinson, K.L. Rowlen and J.W. Birks. Stopped-Flow Kinetics Investigation of the Imidazole-Catalyzed Peroxyoxalate Chemiluminescence Reaction, J. Org. Chem. 63 (1998) 3023-3031. 

[13] F. McCapra, Chemical generation of excited states: The basis of chemiluminescence and bioluminescence,  Methods Enzymol: Academic Press; (2000) p.p. 3-47.

[14] T. Wilson, Comments on the mechanisms of chemi and bioluminescence, Photochem. Photobiol. 62 (1995) 601-606.

[15]  Á. Alcázar, J.M. Jurado, M.J. Martín, F. Pablos, A.G. González, Enzymaticspectrophotometric determination of sucrose in coffee beans, Talanta 67 (2005) 760-766. 

[16] C. Ma, Z. Sun, C. Chen, L. Zhang and S. Zhu, Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC–ELSD, Food Chem.145 (2014) 784-788.  

[17] F.J. Rambla, S. Garrigues and M. de la Guardia, PLS-NIR determination of total sugar, glucose, fructose and sucrose in aqueous solutions of fruit juices, Anal. Chim. Acta 344 (1997) 41-53. 

[18] H. Shekarchizadeh, A.A. Ensafi and M. Kadivar, Selective determination of sucrose based on electropolymerized molecularly imprinted polymer modified multiwall carbon nanotubes/glassy carbon electrode, Mater. Sci. Eng. C. 33 (2013) 3553-3561.

[19]  O.O. Soldatkin, V.M. Peshkova, O.Y. Saiapina, I.S. Kucherenko, O.Y. Dudchenko, V.G. Melnyk, O.D. Vasylenkoc, L.M. Semenychevac, A.P. Soldatkina, b, S.V. Dzyadevycha, Development of conductometric biosensor array for simultaneous determination of maltose, lactose, sucrose and glucose, Talanta 115 (2013) 200-207. 

[20] E. Vargas, M. Gamella, S. Campuzano, A. Guzmán-Vázquez de Prada, M.A. Ruiz, A.J. Reviejo and J.M. Pingarrón, Development of an integrated electrochemical biosensor for sucrose and its implementation in a continuous flow system for the simultaneous monitoring of sucrose, fructose and glucose, Talanta 105 (2013) 93-100. 

[21] N.D. Danielson, C.A. Heenan, F. Haddadian and A. Numan, Fluorometric Determination of Fructose, Glucose, and Sucrose Using Zirconyl Chloride, Microchem. J. 63 (1999) 405-414. 

[22] J. Zhu, L. Shu, M. Wu, Z. Wang, Q. Wang, P. He and et al., Development of a compact chemiluminescence system coupled with capillary electrophoresis for carbohydrate analysis, Talanta 93 (2012) 428-432.

[23]  N. Balasubramanian, RECENT SYNTHETIC APPLICATIONS OF NITRONES. A REVIEW, Org. Prep. Proced. Int. 17 (1985) 23-47. 

[24] J. Hamer and A. Macaluso, Nitrones. Chem Rev. 64 (1964) 473-95. 

[25] J.Y. Pfeiffer and A.M. Beauchemin, Simple Reaction Conditions for the Formation of Ketonitrones from Ketones and Hydroxylamines, J. Org. Chem. 74 (2009) 8381-8383. 

[26] K.R. Maples, A.R. Green and R.A. Floyd, Nitrone-related therapeutics: potential of NXY-059 for the treatment of acute ischaemic stroke, CNS Drugs. 18 (2004) 1071-1084. 

[27] C.E. Thomas, D.F. Ohlweiler, V.L. Taylor and C.J. Schmidt, Radical trapping and inhibition of iron-dependent CNS damage by cyclic nitrone spin traps, J. Neurochem. 68 (1997) 1173-1182. 

[28] F.A. Villamena, A. Das and K.M. Nash, Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics, Future Med. Chem. 4 (2012) 1171-1207. 

[29]  S. Pyne, J. Safaei-G, B. Skelton and A. White, 1,3-Dipolar Cycloadditions of a Chiral Oxazolidinone With Nitrones and Nitrile Oxides, Aust. J. Chem. 48 (1995) 1511-1533. 

[30] S.G. Pyne, J. Safaei-G., K. Schafer, A. Javidan, B.W. Skelton and A.H. White, Diastereoselective 1,3-Dipolar Cycloadditions and Michael Reactions of Azomethine Ylides to (2<i>R</i>)-3Benzoyl-4-methylidene-2-phenyloxazolidin5-one and (2<i>S</i>)-3-Benzoyl-2-t-butyl4-methylideneoxazolidin-5-one, Aust. J. Chem. 51 (1998) 137-158. 

[31] K.B. Torssell, Nitrile oxides, nitrones, and nitronates in organic synthesis: novel strategies in synthesis: Vch New York (1988). [32] J.G. Burr, Chemi- and Bioluminescence: M. Dekker (1985).

[33] K. Honda, K. Miyaguchi and K. Imai, Evaluation of aryl oxalates for chemiluminescence detection in highperformance liquid chromatography, Anal. Chim. Acta 177 (1985) 103-110.

[34]  M. Katayama, H. Takeuchi and H. Taniguchi, Determination of amines by flowinjection analysis based on aryl oxalateSulphorhodamine 101 chemiluminescence, Anal. Chim. Acta 281 (1993) 111-118.

[35]  M.M. Rauhut. Chemiluminescence from concerted peroxide decomposition reactions, Acc. Chem. Res. 2 (1969) 80-87. 

[36] M. Shamsipur, A. Yeganeh-Faal, M.J. Chaichi, M. Tajbakhsh and A. Parach, A study of chemiluminescence from reaction of bis(2,4,6-trichlorophenyl)oxalate, hydrogen peroxide and an optical brightener 5-(3anilino-5-chloroanilino)-2-{(E)-2-[4-(3-anilino-5-chloroanilino)-2-sulfophenyl]-1-ethenyl}-1-benzenesulfonic acid, Dyes and Pigments 72 (2007) 113-118. 

[37] M. Shamsipur, A. Yeganeh Faal, M.J. Chaichi and M. Bordbar, Evaluation and determination of kinetic and thermodynamic chemiluminescence characteristics of a novel peroxyoxalate system using two new triazine derivative, J. App. Chem. 7 (2013) 11-21.

[38]  M.M. Rauhut, L.J. Bollyky, B.G. Roberts, M. Loy, R.H. Whitman, A.V. Iannotta, A.M. Semsel and R.A. Clarke, Chemiluminescence from reactions of electronegatively substituted aryl oxalates with hydrogen peroxide and fluorescent compounds, J. Am. Chem. Soc. 89 (1967) 6515-6522. 

[39] R.M. Hochstrasser and G.B. Porter, Primary processes in photo-oxidation, Q Rev: Chem. Soc. 14 (1960) 146-173. 

[40] M.M. Rauhut, B.G. Roberts and A.M. Semsel, A Study of Chemiluminescence from Reactions of Oxalyl Chloride, Hydrogen Peroxide, and Fluorescent Compounds1, J. Am. Chem. Soc. 88 (1966) 3604-3617. 

[41] M.J. Chaichi, A.R. Karami, A. Shockravi and M. Shamsipur, Chemiluminescence characteristics of cumarin derivatives as blue fluorescers in peroxyoxalate–hydrogen peroxide system, Spectrochim. Acta, Pt A: Mol. Biomol. Spectrosc. 59 (2003) 11451150. 

[42] M. Shamsipur, M.J. Chaichi and A.R. Karami, A study of peroxyoxalatechemiluminescence of acriflavine, Spectrochim. Acta, Pt A: Mol. Biomol. Spectrosc. 59 (2003) 511-517. 

[43] J.H. Lee, J.C. Rock, M.A. Schlautman and E.R. Carraway, Characteristics of key intermediates generated in uncatalyzed bis(2,4-dinitrophenyl) oxalate (DNPO) chemiluminescence reactions, J. Chem. Soc. Perkin. Trans. 2 (2002) 1653-1657. 

[44] M.M. Nakamura, S.A. Saraiva and N. Coichev, Parameters Affecting the Peroxyoxalate Chemiluminescence, Anal. Lett. 32 (1999) 2471-2487. 

[45] M. Shamsipur, A. Yeganeh-Faal, M.J. Chaichi, M. Tajbakhsh and A. Parach, A study of peroxyoxalate-chemiluminescence of 4,4′-bis{[4,6-bis (2-hydroxyethyl)amino1,3,5-triazin-2-yl]amino}stilbene-2,2′-disulfonic acid-disodium salt as a novel blue fluorescer, Spectrochim. Acta, Pt A: Mol. Biomol. Spectrosc. 66 (2007) 546-551. 

[46] S.Y. Kazemi and S.M. Abedirad, Effect of glutathione on peroxyoxalate chemiluminescence of hypericin as the fluorophore, Spectrochim. Acta, Pt A: Mol. Biomol. Spectrosc. 118 (2014) 782-786.

[47]  K. Zargoosh, M. Shamsipur, M. Qandalee, M. Piltan and L. Moradi, Sensitive and selective determination of glucose in human serum and urine based on the peroxyoxalate chemiluminescence reaction of a new Fluorophore, Spectrochim. Acta, Pt A: Mol. Biomol. Spectrosc. 81 (2011) 679-683.