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Abstract 

A quantitative structure-activity relationship model has been created for forecasting the antagonist potency of benzyl 

tetrazole derivatives as human histamine receptors. Various kinds of molecular descriptors were used to represent 

different aspects of the molecular structures. In this method, the whole data set for the compounds were divided into the 

training and test sets. The model of relationships between molecular descriptors and biological activity of molecules were 

created by using stepwise multiple linear regressions and a genetic algorithm. Comparison of the results obtained 

indicated the superiority of the genetic algorithm based multiple linear regression over the stepwise based multiple linear 

regression. The ultimate quantitative structure-activity relationship model (N =64, R2=0.808, F= 30.806, Q2adj= 0.782, 

Q2LOO = 0.751, Q2LGO=0.669) was fully approved using the leave-one-out cross-validation method, Fischer statistics 

(F), external test set and the Y-randomization test. As a result, the produced quantitative structure-activity relationship 

model could be applied as a valorous instrumentation for sketching analogous groups of new antagonists of histamine 

receptors. 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is the most joint form 

of neurodegenerative insanity [1-3]. It forms for 

nearly 50–60% of the general occasions of 

dementia between persons over the age of 65 

years [4]. Unfortunately, the remedial options for 

AD are limited. Alzheimer’s disease (dementia) is 

a very active area of histamine H3 receptor 

research [5-6]. One of the mostly prescribed anti-

Alzheimer’s drugs are H3R antagonists [7-8]. 

Histamine is a biogenic amine that is a wide range 

of biological functions, including neurotrans-
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 چکیده
است. انواع مختلف شده جادیا نیستامیه رندهیان گعنوتترازول به لیمشتقات بنز یستیآنتاگون تیفعال ینیبشیپ یبرا تیفعال -ساختار یمدل ارتباط کم کی

دو  هب باتیترک هایمجموعه داده یتمام روش، نیاستفاده شده است. در ا یمولکول یهامختلف ساختار یهادادن جنبهنشان یبرا یمولکول یهاکنندهفیتوص
گانه، و با چند یخط ونیها با استفاده از رگرسمولکول یکیولوژیب تیو فعال یمولکول یهاکنندهفیتوص نیاند. مدل ارتباط بشده میتقس یشیو آزما یبخش آموزش

چندگانه  یخط ونیرگرس - تمیالگور کیروش ژنت یبرتردهنده حاصل شده، نشان جینتا سهیشده است. مقا جادیا تمیالگور کیاستفاده از روش گام به گام و ژنت
نمونه خارج از رده و آماره  کیمتقاطع  یابیبا استفاده از روش ارز تیفعال ساختار یباشد. مدل ارتباط کمیچندگانه م یخط ونیرگرس به روش گام به گام تینس
 یختگیهم رو روش ب (Q2LGO=0.66964, R2=0.808, F= 30.806, Q2adj=0.782, Q2LOO==N ,0.751) یدسته آزمون خارج شر،یف

 یهاستیمشابه آنتاگون یساختارها یطراح یبه عنوان ابزار ارزشمند برا تواندیشده م جادیا تیالفع -ساختار یمدل ارتباط کم جه،یشد. در نت دییأت تصادفی
 .ردیمورد استفاده قرار گ نیستامیه رندهیگ دیجد
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mission, inflammation and smooth muscle 

contraction; these effects are through the 

activation of different G protein-coupled 

receptors (GPCRs) [9]. 

The histamine H3 receptor is predominantly 

explained  in the central nervous system (CNS) 

and is recognized  as a presynaptic receptor 

controlling the release of histamine and the 

release of several neurotransmitters [9-10]. The 

experimental determination of the inhibition 

activity of histamine is difficult, expensive and 

time-consuming, So an effective way to gain a 

complete data set without the necessity of 

performing expensive laboratory experiments is 

the application of quantitative structure activity 

relationship (QSAR) techniques[11-12]. Among 

computational methods, QSAR studies are one of 

the most important areas in chemometrics[13-15]. 

QSAR techniques are rapidly developing and 

have been widely used by chemists for predicting 

compounds’ properties, including biological 

activity, physical properties, and toxicity [16-19]. 

The generated QSAR model could be used as a 

valuable tool for predicting the antagonist potency 

of benzyl tetrazoles derivatives as human 

histamine (H3) receptors. In the present work, 

Multiple linear regression (MLR) was used to 

derive the QSAR equations and stepwise (SW) 

and genetic algorithm (GA)  methods were used 

for the selection of the most relevant descriptors 

from all of the descriptors[20-22]. The main aim 

of this report is to establish a new QSAR model 

for predicting the antagonist potency of benzyl 

tetrazoles derivatives as histamine (H3) receptors. 

 

2. EXPERIMENTAL 
2.1  Data set  

Data used in this QSAR study, a series of 64 

benzyl tetrazoles derivatives as histamine H3 

receptor antagonists were collected from the 

literature [23]. The chemical structures and 

activity data for the complete set of compounds 

can be seen in Table 1. 

 

 
Table 1.  Chemical structures and the corresponding observed and predicted pIC50 values by GA-MLR method. 

NO General structure R1 R2 R EExp.(pIC50) Pred.(pIC50) 

1 

N

R2

F

R1

N
N

NN

 

N

 

_ 6.45 6.24 

2 
O N

 

 

_ 

 

8.66 7.82 

3a 
N N

 

_ 

 

8.47 8.82 

4a 

N N

 

 

_ 

 

4.7 4.94 

5 

N N

 

_ 

 

5.75 5.67 

6a 

N N

 

_ 6.62 6.24 

7a 
N N

 

_ 6.29 6.37 

8 
N N

 

_ 6.74 5.99 

9 
N N

 

_ 5.31 5.88 

10  

N N

 

_ 5.44 5.99 
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NO General structure R1 R2 R EExp.(pIC50) Pred.(pIC50) 

11   

N N

 

_ 5.61 6.03 

12 

N N

 

- 5.61 5.31 

13 

HN N

 

- 4.85 5.62 

14  

N N

 

- 4.7 4.72 

15 

N N

 

- 6.32 7.64 

16  

N N

 

- 5.72 5.89 

17 
N N

O

 

- 7.19 6.75 

18a 

N N

N
N

 

- 7.77 7.22 

19  

NN

 

- 7.55 8.01 

20  

NN

 

- 7.38 6.99 

21 

N

N

 

- 7.85 7.71 

22 

N NN

 

- 7.55 7.09 

23 

N
N

NN

N

N R

 

_ 2-C1 7.29 7.54 

24 _ 2-OCHF 7.47 7.64 

25 _ 3-C1 6.94 6.84 
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NO General structure R1 R2 R EExp.(pIC50) Pred.(pIC50) 

26a _ 3-OCHF 7.72 7.82 

27 _ 4-H 7.68 8.19 

28 _ 4-iPr 8.52 8.50 

29 _ 4-CF2 8.17 8.87 

30 _ 4-OEt 6.26 7.79 

31 _ 4-OCHF 9.22 7.89 

32 _ 4-OCF3 9.3 8.72 

33 _ 4-C1 9.4 9.25 

34  _ 4-Br 8.19 8.88 

35 _ 4-CONH 8.92 8.31 

36 _ 4-CONH 9.7 8.50 

37a _ 4-CONH 8.8 8.49 

38 _ 4-Pyrrolidin-

2-One 

8.04 8.05 

39a _ 4-SO2Me 9.4 8.63 

40  4-SO2NM 8.44 8.41 

41 

N
N

NN

N

N

R
 

_ 

N O

 

7.51 6.71 

42 _ 

N O

 

8.23 8.41 

43 _ 

N N

 

9.05 9.52 

44 _ 

N N

 

7.23 7.61 

45 _ 

N

 

7.39 7.21 
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NO General structure R1 R2 R EExp.(pIC50) Pred.(pIC50) 

46 _ 

N

N

 

6.92 7.36 

47 _ 

N
N

 

7.01 7.36 

48  _ 

N

N

N

 

7.49 7.33 

49 _ 

N
O

N

 

8.8 8.69 

50 _ 

N

S

Me

 

7.03 6.61 

51 _ 

N
N

S

 

7.33 7.93 

52a _ 

N

N

 

4.7 5.58 

53a _ 

N

N

N

 

7.24 7.65 

54 _ N

 

5.56 5.79 

55 _ N

O

 

9.52 9.36 

56a  _ 

N

N

O

 

8.8 8.69 

57 

N
N

NN

N R

N

 

_ 

O

 

7.6 7.22 
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NO General structure R1 R2 R EExp.(pIC50) Pred.(pIC50) 

58 _ 

O

 

9.15 8.54 

59 _ 

NH

 

8.34 8.16 

60 _ 

N

 

7.92 8.51 

61 _ H
N

 

7.48 7.09 

62a _ 

N

N

N

 

6.55 6.83 

63a _ 

N

 

6.99 7.69 

64 

N
N

N

N R

N

N

 

_ 

H
N

O

 

6.13 5.99 

 

The inhibitory activity values are expressed as the 

half maximal inhibitory concentration (IC50). The 

activity data [IC50 (nM)] was converted to the 

logarithmic scale pIC50 [-log IC50 (nM)] and then 

used for the subsequent QSAR analyses as the 

response variables. The data set was randomly 

divided into two subsets: the training set 

containing 51 compounds (80%) and the test set 

containing 13 compounds (20%). The training set 

was applied to build a regression model, and the 

test set was applied to evaluate the predictive 

ability of the model obtained. 

 

2.2  Descriptors calculation 

The first step to obtain a QSAR model is to 

encode the structural features of the molecules, 

which are often called molecular descriptors[24]. 

A molecular descriptor is the most important 

factor affecting the quality of a QSAR model[25]. 

The chemical structures of the 64 studied 

molecules were drawn into the Hyperchem 

(Version8.0) and the pre-optimized was 

conducted using MM+ molecular mechanics force 

field. Then a more precise optimization of these 

molecules was performed by the semi-empirical 

AM1 method. For these the molecular structures 

we carried out geometry optimization calculations 

using the Polak–Ribiere algorithm[26] until the 

root mean square gradient was 0.01. After 

optimization of the chemical structures of the 

studied molecules, the molecular descriptors were 

entered on the DRAGON 2.1 software for the 

calculation of the different types of theoretical 

descriptors for each molecule. Then, a total of 

1497 molecular descriptors were calculated, they 

included a) 0D-constitutional descriptors, b) 1D-

functional groups, atom centered fragments, c) 

2D-topological descriptors, walk and path counts, 

..., d) 3D-Randic molecular profiles, geometrical 

descriptors, ..., e) charge descriptors and f) 

molecular properties. The calculated descriptors 

with a constant or near constant value were first 
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analyzed and those detected were then eliminated 

from the data matrix. In addition, to decrease the 

redundancy existing in the descriptors, the 

correlations of the descriptors with each other and 

with the activity (pIC50) values of the molecules 

were examined. Then, the collinear descriptors 

(i.e. r > 0.9) were detected. Among the collinear 

descriptors, the one presenting the highest 

correlation with the activity (pIC50) was retained 

and the other descriptors were removed from the 

data matrix. Finally, 441 molecular descriptors 

remained. 

 

2.3  Genetic algorithm (GA) 

Genetic algorithm is a stochastic optimization 

technique that has been inspired by evolutionary 

principles[27]. The distinctive aspect of GA for 

researchers is finding the global optimal solution 

in a complex multidimensional search space. The 

first step in GA is a creation of an initial 

population of solutions (chromosomes). Each 

chromosome consists of a sequence of 

independent structures called genes which 

represent the descriptors. In the next step, each 

subset of chromosome is evaluating by its fitness 

to predict pIC50 values. Then, a fraction of the 

children of the next generation is produced by 

crossover and the rest by mutation from the 

parents based on their scaled fitness scores. This 

process is continuous until the evaluation of 

generation took 90% of same fitness [28]. The 

fitness function of our study was leave-one-out 

cross-validation (Q2
LOO). The diagrammatic 

presentation of the genetic algorithm is shown in 

Fig. 1. 

 

 
Fig. 1. The diagrammatic presentation of the genetic 

algorithm. 

 

3. RESULT AND DISCUSSION  
The pIC50 activity of 64 compounds (a training set 

of 51 compounds and a test set of 13 compounds 

from the whole available compounds with known 

activity), benzyl tetrazoles as histamine H3 

receptor antagonists were taken from published 

results and used for the present QSAR study. The 

two sets are listed in Table 1 that the test set 

compounds are marked. After dividing the data 

set into a training set and a test set, the next stage 

was to choose the main factors that were the most 

important for the antagonist potency of the benzyl 

tetrazoles derivatives. The test data were not 

involved by any means in the process of selecting 

the most suitable descriptors or in the extension of 

the QSAR model. They were discussed as a 

completely unknown external set of data, which 

was applied only to test the accuracy of the 

produced model. In this QSAR study, we applied 

a stepwise regression (SW) and genetic algorithm 

(GA) as two common and powerful methods for 

selecting the most important descriptors, and then 

constructed multiple linear regression (MLR) 

models using the selected six descriptors. By SW-

MLR modeling, the six   most significant 

descriptors are nR04, IC4, MATS7v, RDF040v, 

Mor05v and G1u. The SW-MLR model is 

described by the following equation: 

pIC50 = - 20.886 (±6.364) + 1.402 (±0.357) nR04 

+ 2.741 (±0.964) IC4 + 12.683 (±3.503)  

MATS7v - 0.139 (±0.059) RDF040v - 0.861 

(±0.220) Mor05v + 61.631 (±22.677) G1u    (1) 

Ntrain = 51, R2
train= 0.775, R2

test = 0.512, 

R2
adj=0.744, Ftrain= 25.281, Ftest=0.655, RMSEtrain= 

0.611, RMSEtest = 0.967, Q2
LOO= 0.709, 

Q2
LGO=0.673 

In this equation, N is the number of training set 

compounds, Q2
LOO and Q2

LGO, are the squared 

cross-validation coefficients for leave one out and 

leave group out respectively. The R2 is the 

squared correlation coefficient, R2adj is adjusted 

R2 and F is the Fisher F-statistic. The values in 

parentheses are the standard deviations. The good 

values for the training set and the poor values for 

the prediction set indicate that the SW-MLR 

procedure did not produce good results. For more 

investigation, the GA-MLR was used to select the 

best set of variables. To investigate the optimum 

number of descriptors, the influence of the 

number of the descriptors were selected until one 

to ten descriptors. 

Finally, the GA–MLR analysis led to the 

derivation of one model, with six variables, which 

is described by equation 2: 

pIC50 = 39.823 (±13.439) + 1.738 (±0.280) nR04 - 

16.152 (±5.247) LP1 - 1.288 (±0.368) RDF020m 

+ 0.116 (±0.019) Mor02m + 76.186 (±20.365) 

G1u - 26.512 (±5.506) HATS2e              (2) 

Ntrain = 51, R2
train= 0.808, R2

test = 0.903, 

R2
adj=0.782, Ftrain= 30.806, Ftest=6.391, RMSEtrain= 

0.565, RMSEtest = 0.454, Q2
LOO= 0.751, 

Q2
LGO=0.669 
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Then, the built model was used to predict the test 

set data. The prediction results are given in Table 

1. The predicted values of pIC50 for both the 

training and test sets using equation 2 were 

plotted against the experimental pIC50 values in 

Fig. 2. As can be seen from Table 1, the 

prediction results for the pIC50 are in good 

agreement with the experimental values in Fig. 2.  

 

Fig. 2.  The predicted pIC50 values by the GA-MLR 

modeling vs. the experimental pIC50 values. 

 

Multi-collinearity between the above six 

descriptors were checked by calculating their 

variation inflation factors (VIF), which can be 

presented as follows: 

𝑉𝐼𝐹 =
1

1 − 𝑟2
                         (3) 

where r is the correlation coefficient of the 

multiple regression between one variable and the 

others in the model. If VIF equals 1.0, then no 

intercorrelation exists for each variable; if VIF 

falls into the range 1.0–5.0, the related model is 

acceptable; and if VIF is larger than 10.0, the 

related model is unstable and recheck is necessary 

[29]. 

The corresponding VIF values of the six 

descriptors are shown in Table 2. As can be seen 

from Table 2, most of the variables had VIF 

values of less than 5, indicating that the obtained 

model has statistic significance. 

The selected variables of GA-MLR model are 

shown in Table 3, and the correlation matrix 

obtained in this case is shown in Table 3. From 

Table 3, it could be seen that the correlation 

coefficient value of each pair descriptors was less 

than 0.43, which meant that the selected 

descriptors were independent. Testing the 

stability, predictive power and generalization 

ability of the models is a very important step in 

expression their quality [30]. In the paper, the 

ability of the GA-MLR model was evaluated by 

leave-one-out (LOO) and leave-group-out (LGO) 

cross-validation correlation coefficients[31, 32]. 
 

 

Table 2.  Details of the constructed GA–MLR model 

Descriptors coefficients Std.Error MFa VIFb Chemical meanings 

Constant 39.823 13.439 0 0 - 

nR04 1.738 0.280 -0.041 1.997 number of 4-membered rings 

LP1 -16.152 5.247 1.227 1.344 Lovasz-Pelikan index (leading eigenvalue) 

RDF020m -1.288 0.368 0.051 1.356 Radial Distribution Function - 2.0 / weighted 

by atomic masses 

Mor02m 0.116 0.019 -0.089 1.429 3D-MoRSE - signal 02 / weighted by atomic 

masses 

G1u 76.186 20.365 -0.342 1.823 1st component symmetry directional WHIM 

index / unweighted 

HATS2e -26.512 5.506 0.194 1.676 leverage-weighted autocorrelation of lag 2 / 

weighted by atomic Sanderson 

electronegativities 
a Mean effect 
b Variation inflation factor 

 

Table 3.  Correlation coefficient matrix of the selected descriptors 

 nR04 LP1 RDF020m Mor02m G1u HATS2e 

nR04 1 0 0 0 0 0 

LP1 0.274 1 0 0 0 0 

RDF020m 0.248 -0.331 1 0 0 0 

Mor02m 0.361 -0.076 0.231 1 0 0 

G1u -0.483 -0.065 -0.183 -0.492 1 0 

HATS2e -0.532 -0.033 -0.192 -0.253 0.437 1 
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The Q2
LOO and Q2

LGO, parameters for the MLR 

model are shown in equation 2. The results show 

that GA-MLR model has a good internal and 

external predictive power. 

There are several methods for defining the 

applicability domain (AD) of QSAR models, but 

the most common one is determining the leverage 

values for each compound. To visualize the AD 

of a QSAR model, the Williams plot – the plot of 

the standardized residuals versus the leverage 

values (h) was exploited in this study [33]. By 

analyzing the applicability domain of the model 

(2) from the Williams plot (Fig. 3) it can be seen 

that three compounds (No.6, No.14 and No.25) 

from the training set with h > h* and the 

standardized residuals <3δ are identified as 

structural outliers and high leverage chemicals. 

The QSAR model was confirmed by applying Y-

randomization. Several random shuffles of the Y 

vector (pIC50) were performed and the low R2 and 

Q2
LOO values that were obtained showed that the 

good results in the original model use were not 

due to a chance correlation or structural 

dependency of the training set [34]. The results of 

the Y-randomization test are presented in Table 4. 
 

 
Fig. 3.  The William plot of the GA-MLR model. 

 

  Table 4.  R2
train and Q2

LOO values after several Y-

randomization tests 

No Q2 R2 

1 0.0350 0.1029 

2 0.1425 0.0448 

3 0.0256 0.2392 

4 0.0067 0.1184 

5 0.0130 0.0816 

6 0.2287 0.0281 

7 0.1516 0.0546 

8 0.0145 0.1471 

9 0.0031 0.1417 

10 0.0359 0.0594 

4. CONCLUSIONS 

In this article, a QSAR study of 64 histamine H3 

receptor antagonists was performed based on the 

theoretical molecular descriptors calculated by the 

DRAGON software and selected by SW-MLR 

and GA-MLR methods. The GA-MLR model 

clearly demonstrates good correlations between 

the structure and activity of the studied 

compounds. This model has good stability, 

robustness and predictive ability, which were 

verified by internal validation (cross-validation by 

LOO, LGO, and Y-randomization) and external 

validation. 
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