Adsorption of Copper, Zinc and Lead Metal Ions from Aqueous Samples Using Fe3O4 Magnetic Nanoparticles Modified with Alizarin Red S

Document Type: Original research article


Department of Chemistry, Payame Noor University, P.O.BOX 19395-3697 Tehran, Iran


Fe3O4 magnetic nanoparticles modified with alizarin red S (ARS-Fe3O4) were used for the removal of several metal ions from aqueous solution. The mean size and the surface morphology of the nanoparticles were characterized by TEM, XRD and FTIR techniques. Adsorption studies of mentioned metal ions were performed in batch system. The adsorption of metal ions onto ARS-Fe3O4nanoparticles was affected by the several analytical parameters such as an initial pH, metal ions concentration, adsorbent amount, contact time and temperature. Experimental results indicated that ARS-Fe3O4 nanoparticles were quantitatively removed. The maximum adsorption capacities ofARS-Fe3O4 for the Langmuir model were 50.0, 22.7 and 21.7 mg of metal ions per gram of nanoparticle for Zn2+,Cu2+and Pb2+, respectively. The isotherm evaluations revealed that the Langmuir model attained better fits to the equilibrium data than the othermodels. The kinetic data of adsorption of Zn2+,Cu2+and Pb2+ ions on the synthesized adsorbents were best described by pseudo-second-order equation. The adsorption processesfor three metal ions were endothermic. Metal ions were desorbed from nanoparticles by 2 mLHCl solution 0.1 mol L−1.



[1]     J.  Song, H.  Kong, J.  Jang, Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles, J. Colloid Interface Sci. 359 (2011) 505–511.

[2]     M.A.Tofighy and T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, J. Hazard. Mater. 185 (2011) 140–147.

[3]     G. Rao, C. Lu and F. Su, Sorption of divalent metal ions from aqueous solution bycarbon nanotubes: a review, Sep. Purif. Technol. 58 (2007) 224–231.

[4]     Y.H. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu and B. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueoussolutions by multiwalled carbon nanotubes, Carbon 41 (2003) 2787–2792.

[5]     M.M. Rao, A. Ramesh, G.P.C. Rao, K. Seshaiah, Removal of copper and cadmiumfrom the aqueous solutions by activated carbon derived from ceibapentandrahills, J. Hazard. Mater. B 129 (2006) 123–129.

[6]     M. Secar, V. Sakthi and S. Rengaraj, Kinetics equilibrium adsorption study of lead(II)onto activated carbon from coconut sell, J. Colloid Interface Sci. 279 (2004) 307-313.

[7]     J. Ayala, F. Blanco, P. Garcia, P. Rodriguez and J. Sancho, Asturian fly ash as a heavymetals removal material, Fuel. 77 (1998) 1147–1154.

[8]     C.H. Weng and C.P. Huang, Adsorption characteristics of Zn(II) from dilute aqueoussolution by fly ash, Colloid. Surf. A 247 (2004) 137–143.

[9]     Y.S. Ho and G. McKay, The sorption of lead (II) ions on peat, Water Res. 33 (1999)584-578.

[10] S.C. Pan, C.C. Lin and D. Hwa, Reusing sewage sludge ash as adsorbent forcopper removal from waste water, Resour. Conserv. Recy. 39 (2003) 79-80.

[11] B. Biscup and B. Subotic, Removal of heavy metal ions from solutions using zeolites.III. Influence of sodium ion concentration in the liquid phase on the kinetics ofexchange processes between cadmium ions from solution and sodium ionsfromzeolit A, Sep. Sci. Technol. 39 (2004) 925–940.

[12] Q. Li, S. Wu, G. Liu, X. Liao, X. Deng, D. Sun, Y. Hu and Y. Huang, Simultaneous-biosorption of cadmium (II) and lead (II) ions by pretreated biomass of phanerochaete-chrysosporium, Sep. Purif. Technol. 34 (2004) 925–940.

[13] F. Ekmekyapar, A. Aslan, Y.K. Bayhan and A. Cakici, Biosorption of copper(II) byNonliving lichen biomass of cladoniarangoformishoffm, J. Hazard. Mater. 137 (2006) 293-298.

[14] W. Chu, Lead metal removal by recycled alum sludge, Water Res. 33 (1999) 2025-3019.

[15] R. Sublet, M.O. Simonnot, A. Boireau and M. Sardin, Selection of an adsorbent forlead removal from drinking water by a point-of-use treatment device, WaterRes. 37 (2003) 4904–4912.

[16] P. Brown, I.A. Jefcoat, D. Parrish, S. Gill and S. Graham, Evaluation of the adsorptivecapacity of peanut hull pellets for heavy metals in solution, Adv. Environ. Res. 4 (2000) 19-29.

[17] M. Arias, M.T. Barral and J.C. Mejuto, Enhancement of copper and cadmium adsorptionon kaolin by the presence of humid acids, Chemosphere 48 (2002) 1081-1088.

[18] C.V. Diniz, F.M. Doyle and V.S.T. Ciminelli, Effect of pH on the adsorption of selectedheavy metal ions from concentrated chloride solutions by the chelating resindowex M-4195, Sep. Sci. Technol. 37 (2002) 3169–3185.

[19] M. Hossein, N. Dalali, A. Karimi, K. Dastanra, Solid phase extraction of copper, nickel and cobalt in water samples using surfactant coated alumina modified with indane-1,2,3-trione 1,2-dioxime and determination by flame atomic absorption spectrometry, Turk. J. Chem. 34 (2010) 805 – 814.

[20] M. Hossein, N.Dalali, S. Mohammad nejad, Preconcentration of trace amounts of copper(II) on octadecyl silica membrane disks modified with indane-1,2,3-trione 1,2-dioxime prior to its determination by flame atomic absorption spectrometry, Int. J.  Ind. Chem. 3 (2012) 7.

[21] P. Wang, M. Du, H. Zhu, S. Bao, T. Yang and M. Zou, Structure   regulation   of   silica   nanotubes   and   their   adsorptionbehaviors   for   heavy   metal   ions:   pH   effect, kinetics,isotherms   and   mechanism, J. Hazard. Mater. 286 (2015) 533–544.

[22] X. Yu, S. Tong, M. Ge, L. Wu, J. Zuo, C. Cao and W. Song, Adsorption of heavy metal ions from aqueous solution by carboxylatedcellulosenanocrystals, J. Environ. Sci. 25 (2013) 933–943.

[23] L. Bromberg, S. Raduyk and T. A. Hatton, Functional magnetic nanoparticles for biodefense and biological threat monitoring and surveillance, Anal. Chem. 81 (2009) 5637–5645.

[24] D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, Synthesis and characterization of surfactant-coated superparamagnetic-monodispersed iron oxide nanoparticles, J. Magn. Magn. Mater. 225 (2001) 30-36.

[25] S.I. Park, J.H. Kim, J.H. Lim and C.O. Kim, Surface-modified magnetic nanoparticles with lecithin for applications in biomedicine, Curr. Appl. Phys. 8 (2008) 706–709.

[26] D. Faivre and P. Zuddas, An integrated approach for determining the origin of magnetite nanoparticles, Earth Planet Sci. Lett. 243 (2006) 53-60.

[27] R.D. Waldron, Infrared spectra of ferrites, Phys. Rev. 99 (1955) 1727-1735.

[28] K. Can, M. Ozmen and M. Ersoz, Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization, Colloids Surf. B Biointerfaces 71 (2009) 154-159.

[29] S. Shahmohammadi-Kalalagh, H. Babazadeh, A. H. Nazemi and M. Manshouri, Isotherm and Kinetic Studies on Adsorption of Pb, Zn and Cu by Kaolinite, Caspian J. Env. Sci. 9 (2011) 243-255.

[30] A. Afkhami, M. Saber-Tehrani and  H. Bagheri, Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modifiedwith 2,4-dinitrophenyl-hydrazine, J. Hazard. Mater. 181 (2010) 836–844.

[31] V.C. Srivastava, I.D.  Mall and I.M. Mishra, Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash, Colloid. Surf. A 312 (2008) 172–184.

[32] Z. Zhang, I.m. O’Hara, G.A. Kent and W.O.S. Doherty, Comparative study on adsorption of two cationic dyes by milled sugarcane Bagasse, Ind. Crop. Prod. 42 (2013) 41-49.

[33] M. Ghaemi and G. Absalan, Study on the adsorption of DNA on Fe3O4 nanoparticles and on ionic liquid-modified Fe3O4 nanoparticles, Microchim. Acta 181 ( 2014) 45-53.

[34] G. Limousin, P. Gaudet, L. Charlet, S. Szenknect, V. Barthés and M. Krimissa, Sorption isotherms: A review on physical bases, modeling and measurement, Appl. Geochem. 22 (2007) 249-275.

[35] E. Asrari, H. Tavallali and M. Hagshenas, Removal of Zn(II) and Pb (II) ions Using Rice Husk in Food Industrial Wastewater, J. Appl. Sci. Environ. Manage. 14 (2010) 159 – 162.

[36] P. Kampalanonwat and P. Supaphol , The Study of Competitive Adsorption of Heavy Metal Ions from Aqueous Solution by Aminated Polyacrylonitrile Nanofiber Mats, Energy Procedia. 56 ( 2014 ) 142–151.

[37] Y.S. Ho and G. McKay, Pseudo-second-order model for sorption processes, Process Biochem. 34 (1999) 45-465.

[38] B. Saha, S. Das, J. Saikia and G. Das, Preferential and Enhanced Adsorption of Different Dyes on Iron Oxide Nanoparticles: A Comparative Study, J. Phys. Chem. C 115 (2011) 8024-8033.

[39] Y. Yang, D. Jin, G. Wang, D. Liu, X. Jia and Y. Zhao, Biosorption  of  Acid  Blue  25  by  unmodified  and  CPC-modified  biomass  of  Penicillium YW01: Kinetic study, equilibrium isotherm and FTIR analysis, Colloids Surf. B  88 (2011) 521-526.

[40] K.A.G. Gusmaoa, L.V.A. Gurgel, T.M.S. Meloa and L.F. Gil, Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions-Kinetic and equilibrium studies, Dyes Pigm. 92 (2012) 967-974.

[41] K.Elass, A. Laachach, A. Alaoui and M. Azzi M, Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco, Appl. Clay Sci. 54 (2011) 90-96.

[42] P. Yan, M. He,  B. Chen and B. Hu, Restricted accessed nanoparticles for direct magnetic solid phase extraction of trace metal ions from human fluids followed by inductively coupled plasma mass spectrometry detection, Analyst 140 (2015) 4298-306.