Insilco study: Modeling Parameters for Prediction of Activity of Iminochromene Derivatives

Document Type: Original research article


Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Iran


A quantitative structure activity relationship analysis has been applied to a data set of 34 derivatives of 8-hydroxy-2-iminochromene with inhibitory activities for carbonyl reductase 1. Semi-empirical quantum chemical calculations at the AM1 level were used to find the geometry of the studied molecules. Whole numbers of descriptors were calculated with Dragon software, and a subset of calculated descriptors was selected from 407 Dragon descriptors with the multiple linear regression (MLR), partial least square and principal component analysis methods. Results displayed that the MLR method predicted of activity good enough. The best model of MLR, with seven descriptors was selected.  Also it indicates very good consistency towards data variations for the validation methods.  The predicted values of activities are in suitable agreement with the experimental results. The obtained results suggested that the PLS method could be more helpful to predict the biological activity of iminochromene derivatives. This study is be useful to predict the activity of other compounds in the same derivatives.



[1]     O.S. Bains, T.A. Grigliatti, R.E. Reid and K.W. Riggs, Naturally occurring variants of human aldo-keto reductases with reduced in vitro metabolism of daunorubicin and doxorubicin,  J. Pharmacol. Exp. Ther.  335 (2010) 533-345.

[2]     F. Hoffmann and E.  Maser, Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily, Drug Metab. Rev. 39 (2007) 87-144.

[3]     T. Matsunaga, S. Shintani and A.  Hara, Multiplicity of mammalian reductases for xenobiotic carbonyl compounds, Drug Metab. Pharmacokinet. 21 (2006) 1-18.

[4]     P. Malatkova, E.  Maser and V.  Wsol, Human carbonyl reductases, Curr. Drug Metab. 11 (2010) 639-658.

[5]     J.A. Doorn, E. Maser, A.  Blum, D.J.  Claffey and D.R. Petersen, Human carbonyl reductase catalyzes reduction of 4-oxonon-2-enal, Biochemistry 43 (2004) 13106-13114.

[6]     D. Hu, N. Miyagi, Y. Arai, T. Oguri, T. Miura, T. Nishinaka T, et al. Synthesis of 8-hydroxy-2-iminochromene derivatives as selective and potent inhibitors of human carbonyl reductase 1,  Org. Biomol.  Chem. 13 (2015) 7487-7499.

[7]     E. Arkan, M. Shahlaei, A. Pourhossein, K. Fakhri and A. Fassihi, Validated QSAR analysis of some diaryl substituted pyrazoles as CCR2 inhibitors by various linear and nonlinear multivariate chemometrics methods, Eur. J. Med. Chem. 45 (2010) 3394-3406.

[8]     M. Shahlaei, A. Madadkar-Sobhani, L. Saghaie and A. Fassihi, Application of an expert system based on Genetic Algorithm–Adaptive Neuro-Fuzzy Inference System (GA–ANFIS) in QSAR of cathepsin K inhibitors, Expert Syst. Appl. 39 (2012) 6182-6191.

[9]      A.R. Katritzky, V.S. Lobanov and M. Karelson, QSPR: the correlation and quantitative prediction of chemical and physical properties from structure, Chem. Soc. Rev. 24 (1995) 279-287.

[10] R. Kumar, M. Son, R. Bavi, Y. Lee, C. Park, V. Arulalapperumal, et al.  Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling, Acta Pharmacol. Sin. 36 (2015) 998-1012.

[11] V.K. Agrawal, S. Bano, C.T. Supuran and P.V.Khadikar ,  QSAR study on carbonic anhydrase inhibitors: aromatic/heterocyclic sulfonamides containing 8-quinoline-sulfonyl moieties, with topical activity as antiglaucoma agents,   Eur. J. Med .Chem. 39 (2004) 593-600.

[12] R. Kumar, P. Malla, A. Verma and M. Kumar, Design of potent human steroid 5α-reductase inhibitors: 3D-QSAR CoMFA, CoMSIA and docking studies.  Med. Chem. Res. 22 (2013) 4568-4582.

[13] R.L. Sawant, S.S.Ramdin and J.B. Wadekar, Synthesis, QSAR and docking studies of 5HT2A receptor antagonising thiazolo[3,2-a]pyrimidines as antipsychotic agents, Marmara Pharmaceut.  J. 18 (2014) 109-116.

[14]  R.Y. Chaudhari, S.B. Bhise, A. Yadav and T. Sonawane, QSAR, Synthesis and Docking Study of 1, 4-DHP as Novel Antitubercular Agents,   J. Pharm. Res. Clin. Pract. 2 (2016) 1-9.

[15] L. Firoozpour , N. Edraki , M. Nakhjiri ,  S. Emami , M. Safavi , S.K.Ardestani , et al.  Cytotoxic activity evaluation and QSAR study of chromene-based chalcones. Arch.  Pharm. Res. 35 (2012) 2117-2125.

[16] P. Vasanthanathan , M. Lakshmi ,M.A. Babu and  S.G. Kaskhedikar , Classical QSAR study on chromene derivatives as lanosterol 14alpha- demethylase inhibitor: a non azole antifungal target,  Med. Chem. 2 (2006) 363-367.

[17] N. Madadi Mahani, A. Mohadesi Zarandi and A.  Horzadeh, QSAR studies of novel iminochromene derivatives as carbonyl reductase 1 (CBR1) inhibitors, Marmara Pharm. J.  22 (2018) 227-236.

[18] Talete srl, Dragon (ver. 5.4), Milano, Italy. Web site: software. htm

[19] R.Todeschini and V.Consonni Handbook of Molecular Descriptors, Wiley-VCH, Weinheim (2000) pp. 667-690.

[20] S. Wold and L. Ericksson, Partial least squares projections to latent structures (PLS) in chemistry. In Encyclopedia of computational chemistry, Ragu & Schleyer, P. (ed.), John Wiley & Sons, ltd. Chichester(2002).

[21] V. Consonni, D. Ballabioand and R. Todeschini,  Comments on the definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model. 49 (2009) 1669-1678.

[22] V. Consonni, D. Ballabioand and R. Todeschini , Evaluation of model predictive ability by external validation techniques,   J.  Chemometrics. 24 (2010) 194-201.  

[23] L. M. Shi,  H .Fang, W.Tomg,  J. Wu,  R. Perkins, R.M. Blair,  W.S.Branham,  S.L.Dial, C.L.  Moland  and  D.M. Sheenan, QSAR Models Using a Large Diverse Set of Estrogens, J. Chem. Inf. Comput .Sci. 41 (2001) 186–195.

[24] D.M. Hawkins, the Problem of Overfitting,   J.  Chem. Inf.  Comput. Sci. 44 (2004) 1–12.

[25]  S. Vaira ,  V.E. Mantovani , J.C. Robles,  J.C. Sanchis and  H.C.  Goicoechea ,   Use of Chemometrics: Principal Component Analysis (PCA) and Principal Component Regression (PCR) for the Authentication of Orange Juice,  J.  Anal. Lett. 32 (1999) 3131-3141.