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1. INTRODUCTION  
Alzheimer’s disease (AD) is a progressive 

neurodegenerative disorder characterized by 

multiple cognitive deficits and progressive 

memory impairment in mid- to late-life. Both 

genetic and environmental factors have been 

implicated in the development of AD, but it is still 

unclear how these factors combine and ultimately 

lead to the neurodegenerative process [1-3]. The 

neuropathological processes underlying AD 

include the extracellular deposition of β-amyloid 

protein in senile plaques, the intracellular 

formation of neurofibrillary tangles, and loss of 

cholinergic neurons in areas of the brain 

associated with learning and memory, executive 

functioning, behavior and emotional responses 

[4].  

Cyclin dependent kinase5 (CDK5) plays an 

essential role in the development of the central 

nervous system. Its deregulation has profound 

cytotoxic effects and has been implicated in the 

development of neurodegenerative diseases such 

as Alzheimer’s disease. Cdk5 is a member of a 

family of proline directed serine/threonine 

kinases. The serine/threonine kinase cdk5 along 

with its cofactor p25 has been supposed to hyper 

phosphorylate tau, leading to the formation of 

paired helical filaments and deposition of 

cytotoxic neurofibrillary tangles and thus 

responsible to neurodegenerative disorders such 

as Alzheimer’s disease and Parkinson’s disease 

[5-10]. 

QSAR methods have been applied in different 

scientific studies including chemistry, biology, 

toxicology and drug discovery to predict and 

classify biological activities of virtual or newly-

synthesized compounds [11-12]. QSAR analysis 

in computational research is responsible for the 

generation of models to correlate biological 

activity and physicochemical properties of a 

series of molecules. The underlying assumption is 

that the variations of biological activity within a 

series can be correlated with changes in measured 

or computed molecular features of the molecules. 

A successful 3D-QSAR model not only helps in 

better understanding of the structure activity 

relationships of any class of molecules, but also 

provides researcher with an insight at molecular 

level about the lead molecules for further 

developments. Quantitative structure activity 

relationship QSAR models have another ability, 

which is providing a deeper knowledge about the 

mechanism of biological activity.  

In the present work, a series of triazolyl thiophene 

derivatives as cdk5/p25 inhibitors potentially 

useful for the treatment of Alzheimer’s disease, 

were selected to establish three-dimensional 

quantitative structure activity relationship (3D-
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validated the external predictive power of both models with predicted correlation coefficients (r2
pred) 0.968 and 
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QSAR) models using comparative molecular field 

analysis (CoMFA) and comparative molecular 

similarity indices analysis (CoMSIA) methods. 

CoMFA relates the biological activity of a series 

of molecules with their steric and electrostatic 

fields. The basic principle of CoMSIA is the same 

as that of CoMFA, but includes some additional 

descriptors such as hydrophobicity, hydrogen 

bond donor and hydrogen bond acceptor. 

Both approaches of CoMFA and CoMSIA are 

based on not only molecular structure, but also 

the calculation of the interaction energy between 

the molecule and probe. In these approaches, the 

structure of the studied molecules should be 

aligned and placed in a 3D lattice constituted by 

several thousands of grid points and use a probe 

(steric, electrostatic, hydrophilic, etc.) to map the 

surface of the molecule on the basis of the 

molecule interaction with the probe. The 

approaches of CoMFA and CoMSIA are almost 

similar except for molecular similarity, which is 

computed in the case of CoMSIA. In CoMSIA, 

the Lennard–Jones and Coulombic potentials used 

in CoMFA to compute the steric and electrostatic 

grids are replaced by an exponential functional 

form derived from alignment algorithm. 

 

2. EXPERIMENTAL 

2.1. Data set 

All of one hundred and twelve compounds of 

methyl linked cyclo hexyl thiophenes with 

triazole inhibitors and experimental IC50 values 

were collected from the literature [13]. The IC50 

values were converted to the corresponding log 

IC50 and used as dependent variable in CoMFA 

and CoMSIA studies. The log IC50 values 

provide a homogenous data set for 3D-QSAR 

study. The 3D-QSAR models were generated 

using a training set including 88 molecules. A test 

set including 24 molecules was used to an 

external validation of the models. The structures 

of different groups of studied compounds along 

with different substituents are shown in Tables 1 

and 2. 
 

 

Table 1. The structure of different groups of methyl linked cyclo hexyl thiophenes with triazole studied in this work 

No. Structure No. Structure 

1 

 

5 

 

2 

 

6 

 

3 

 

7 

 

4 

 

8 

 

 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/comparative-molecular-field-analysis
https://www.sciencedirect.com/topics/mathematics/lattices
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Table 2. Data set with different substituents along with experimental and predicted log IC50 values using CoMFA and 

CoMSIA models 

No. Comp. R1 R2 R3  Log IC50  

Exp. CoMFA 

 

CoMSIA  

1 1a NHCOCH2Cl - - 1.63 1.562 1.721 

2 1b NHCOCH3 - - 2.60 2.604 2.559 

3 1c* NHCOC6H5 - - 2.80 2.857 2.900 

4 1d NHCH2CH2COOH - - 2.43 2.435 2.413 

5 2a NHCOCH2Cl -4-ClC6H4 - 2.54 2.472 2.473 

6 2b* NHCOCH3 -4-ClC6H4 - 2.66 2.666 2.680 

7 2c NHCOC6H5 -4-ClC6H4 - 2.26 2.244 2.227 

8 2d NHCH2CH2COOH -4-ClC6H4 - 2.66 2.654 2.667 

9 2e* NHCOCH2Cl -C6H5 - 2.88 2.900 2.866 

10 2f NHCOCH3 -C6H5 - 2.76 2.676 2.731 

11 2g NHCOC6H5 -C6H5 - 2.95 2.958 2.932 

12 2h NHCH2CH2COOH -C6H5 - 2.83 2.879 2.787 

13 2i NHCOCH2Cl -CH3 - 2.84 2.857 2.748 

14 2j NHCOCH3 -CH3 - 2.77 2.805 2.675 

15 2k NHCOC6H5 -CH3 - 2.79 2.802 2.799 

16 2l NHCH2CH2COOH -CH3 - 2.64 2.641 2.621 

17 3a NHCOCH2Cl -4-ClC6H4 - 1.76 1.888 2.093 

18 3b NHCOCH3 -4-ClC6H4 - 2.62 2.491 2.275 

19 3c NHCOC6H5 -4-ClC6H4 - 2.74 2.700 2.674 

20 3d NHCH2CH2COOH -4-ClC6H4 - 2.62 2.631 2.615 

21 3e* NHCOCH2Cl -C6H5 - 2.82 2.710 2.708 

22 3f* NHCOCH3 -C6H5 - 2.60 2.667 2.687 

23 3g NHCOC6H5 -C6H5 - 2.69 2.700 2.735 

24 3h NHCH2CH2COOH -C6H5 - 3.69 3.688 3.735 

25 3i* NHCOCH2Cl -CH3 - 1.78 2.042 2.136 

26 3j NHCOCH3 -CH3 - 2.66 2.519 2.417 

27 3k NHCOC6H5 -CH3 - 2.75 2.720 2.797 

28 3l* NHCH2CH2COOH -CH3 - 2.81 2.742 2.809 

29 4a NHCOCH2Cl -4-ClC6H4 - 2.65 2.644 2.706 

30 4b NHCOCH3 -4-ClC6H4 - 2.59 2.523 2.642 

31 4c NHCOC6H5 -4-ClC6H4 - 2.47 2.409 2.445 

32 4d NHCH2CH2COOH -4-ClC6H4 - 2.73 2.725 2.719 

33 4e NHCOCH2Cl -C6H5 - 2.83 2.775 2.766 

34 4f NHCOCH3 -C6H5 - 2.76 2.724 2.76 

35 4g NHCOC6H5 -C6H5 - 2.55 2.561 2.497 

36 4h* NHCH2CH2COOH -C6H5 - 2.81 2.834 2.843 

37 4i NHCOCH2Cl -CH3 - 2.84 2.804 2.768 

38 4j NHCOCH3 -CH3 - 2.59 2.746 2.764 

39 4k NHCOC6H5 -CH3 - 2.75 2.759 2.757 

40 4l NHCH2CH2COOH -CH3 - 2.78 2.831 2.917 

41 5a NHCOCH2Cl -4-ClC6H4 - 1.59 1.563 1.507 

42 5b* NHCOCH3 -4-ClC6H4 - 1.81 1.814 1.803 

43 5c* NHCOC6H5 -4-ClC6H4 - 2.37 2.419 2.311 

44 5d NHCH2CH2COOH -4-ClC6H4 - 2.30 2.266 2.257 

45 5e NHCOCH2Cl -C6H5 - 1.57 1.747 1.852 

46 5f NHCOCH3 -C6H5 - 2.28 2.050 1.937 

47 5g NHCOC6H5 -C6H5 - 2.42 2.418 2.483 

48 5h NHCH2CH2COOH -C6H5 - 2.66 2.622 2.665 

49 5i NHCOCH2Cl -CH3 - 1.79 1.884 1.854 

50 5j NHCOCH3 -CH3 - 2.40 2.422 2.415 

51 5k NHCOC6H5 -CH3 - 2.26 2.203 2.319 

52 5l NHCH2CH2COOH -CH3 - 2.97 2.972 2.949 

53 6a* NHCOCH2Cl -4ClC6H4 -CH3 2.67 2.694 2.743 

54 6aa NHCOC6H5 -CH3 -CH3 2.81 2.833 2.819 

55 6ab NHCH2CH2COOH -CH3 -CH3 2.56 2.551 2.577 

56 6ac* NHCOCH2Cl -CH3 -C6H5 2.56 2.522 2.540 

57 6ad NHCOCH3 -CH3 -C6H5 2.64 2.680 2.634 

58 6ae NHCOC6H5 -CH3 -C6H5 2.61 2.628 2.608 

59 6af * NHCH2CH2COOH -CH3 -C6H5 2.68 2.747 2.649 
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60 6ag NHCOCH2Cl -CH3 CH2Cl 2.66 2.663 2.662 

61 6ah* NHCOCH3 -CH3 CH2Cl 2.68 2.617 2.673 

62 6ai NHCOC6H5 -CH3 CH2Cl 2.55 2.566 2.532 

63 6aj NHCH2CH2COOH -CH3 CH2Cl 2.42 2.428 2.404 

64 6b NHCOCH3 -4-ClC6H4 -CH3 2.81 2.791 2.771 

65 6c NHCOC6H5 -4-ClC6H4 -CH3 2.50 2.473 2.513 

66 6d NHCH2CH2COOH -4-ClC6H4 -CH3 2.55 2.498 2.569 

67 6e* NHCOCH2Cl -4-ClC6H4 -C6H5 2.79 2.798 2.770 

68 6f NHCOCH3 -4-ClC6H4 -C6H5 2.72 2.628 2.712 

69 6g NHCOC6H5 -4-ClC6H4 -C6H5 2.68 2.695 2.668 

70 6h* NHCH2CH2COOH -4-ClC6H4 -C6H5 2.43 2.454 2.399 

71 6i NHCOCH2Cl -4ClC6H4 CH2Cl 2.36 2.337 2.403 

72 6j NHCOCH3 -4-ClC6H4 CH2Cl 2.41 2.389 2.413 

73 6k* NHCOC6H5 -4-ClC6H4 CH2Cl 2.53 2.545 2.500 

74 6l NHCH2CH2COOH -4-ClC6H4 CH2Cl 2.27 2.286 2.230 

75 6m NHCOCH2Cl -C6H5 -CH3 2.54 2.476 2.568 

76 6n NHCOCH3 -C6H5 -CH3 2.74 2.707 2.777 

77 6o NHCOC6H5 -C6H5 -CH3 2.75 2.764 2.752 

78 6p* NHCH2CH2COOH -C6H5 -CH3 2.67 2.667 2.669 

79 6q NHCOCH2Cl -C6H5 -C6H5 2.67 2.643 2.616 

80 6r NHCOCH3 -C6H5 -C6H5 2.62 2.587 2.701 

81 6s* NHCOC6H5 -C6H5 -C6H5 2.67 2.712 2.696 

82 6t NHCH2CH2COOH -C6H5 -C6H5 2.64 2.654 2.637 

83 6u NHCOCH2Cl -C6H5 CH2Cl 2.73 2.760 2.792 

84 6v NHCOCH3 -C6H5 CH2Cl 2.81 2.804 2.812 

85 6w NHCOC6H5 -C6H5 CH2Cl 2.74 2.738 2.718 

86 6x NHCH2CH2COOH -C6H5 CH2Cl 2.56 2.568 2.566 

87 6y NHCOCH2Cl -CH3 -CH3 2.66 2.672 2.63 

88 6z NHCOCH3 -CH3 -CH3 2.51 2.507 2.512 

89 7a NHCOCH2Cl -4-ClC6H4 - 1.54 1.643 1.547 

90 7b NHCOCH3 -4-ClC6H4 - 2.33 2.306 2.357 

91 7c NHCOC6H5 -4-ClC6H4 - 2.34 2.406 2.346 

92 7d* NHCH2CH2COOH -4-ClC6H4 - 2.41 2.402 2.429 

93 7e NHCOCH2Cl -C6H5 - 1.51 1.460 1.519 

94 7f * NHCOCH3 -C6H5 - 2.59 2.608 2.573 

95 7g* NHCOC6H5 -C6H5 - 2.64 2.692 2.664 

96 7h NHCH2CH2COOH -C6H5 - 2.43 2.387 2.427 

97 7i NHCOCH2Cl -CH3 - 2.53 2.584 2.476 

98 7j NHCOCH3 -CH3 - 2.66 2.697 2.603 

99 7k* NHCOC6H5 -CH3 - 2.67 2.715 2.657 

100 7l NHCH2CH2COOH -CH3 - 2.73 2.745 2.734 

101 8a NHCOCH2Cl -4-ClC6H4 - 3.46 3.530 3.588 

102 8b NHCOCH3 -4-ClC6H4 - 3.80 3.624 3.685 

103 8c NHCOC6H5 -4-ClC6H4 - 3.52 3.469 3.527 

104 8d NHCH2CH2COOH -4-ClC6H4 - 3.77 3.778 3.719 

105 8e NHCOCH2Cl -C6H5 - 3.80 3.756 3.736 

106 8f NHCOCH3 -C6H5 - 3.81 3.808 3.797 

107 8g* NHCOC6H5 -C6H5 - 3.74 3.771 3.826 

108 8h NHCH2CH2COOH -C6H5 - 3.70 3.738 3.703 

109 8i NHCOCH2Cl -CH3 - 3.66 3.717 3.624 

110 8j NHCOCH3 -CH3 - 3.70 3.795 3.760 

111 8k NHCOC6H5 -CH3 - 3.79 3.787 3.762 

112 8l NHCH2CH2COOH -CH3 - 3.79 3.792 3.809 

* Test set 

 

2.2. 3D-QSAR modeling and structure alignment 

All the molecular modeling calculations and 

database alignment were performed using the 

molecular modeling package SYBYL [14]. Partial 

atomic charges calculated using the Gasteiger–

Hückel method were assigned to each atom and 

the energy minimization of each molecule was 

performed using Powell method and Tripos 

standard force field with a distance-dependent 

dielectric function. The minimization was 

terminated when the energy gradient convergence 

criterion 0.05 kcal/mol was reached or when the 

2000 step minimization cycle limit was exceeded. 

Structural alignment was considered as one of the 

most sensitive parameters in CoMFA and 

CoMSIA study, since much experience shows 

that the resulting CoMFA and CoMSIA model is 

often sensitive to the particular alignment [15-18].  

In this study, the lowest energy conformation of 

compound 7e with the most potent activity was 
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selected as the template structure for the 

molecular alignment (Fig. 1). 

 

 

 
Fig. 1. Superposition of compounds in the training and 

test sets using the common substructure-based 

alignment rules (a) Compound 7e used as the template 

molecule for database alignment. (b) Database 

alignment all the compounds in the dataset are shown. 

 

2.2.1. CoMFA and CoMSIA studies  

Generally, to achieve better understanding, the 

contribution of electrostatic field, steric and 

hydrophobic by a set of data, and also to build 

predictive 3D-QSAR models, CoMFA and 

CoMSIA studies were performed based on the 

molecular alignment as described. The Lennard–

Jones potentials and Coulombic terms, which 

represent steric and electrostatic fields for 

CoMFA, respectively; whiles CoMSIA calculates 

similarity indices in the space surrounding each of 

the molecules in the data set. 

In this regard, to generate the 3D-QSAR models, 

for current alignments, the CoMFA and CoMSIA 

methods were used. In CoMFA, Steric and 

electrostatic interactions were calculated using the 

Tripos force field with a distance-dependent 

dielectric constant at all interactions in a regularly 

spaced (2Å) grid taking a sp3carbon atom as steric 

probe and a (+1) charge as electrostatic probe. All 

compounds were aligned based on the lowest 

energy conformer of the reference compound by 

the atom fit method. With standard options for 

scaling of variables, the regression analysis was 

carried out using the full cross-validated partial 

least squares (PLS) method. The final model, non 

cross–validated conventional analysis, was 

developed with the optimum number of 

components to yield a non cross–validated r2 

value. 

The CoMSIA procedure is similar to the CoMFA 

procedure. In this approach, five different 

similarity fields are calculated: steric, 

electrostatic, hydrophobic, hydrogen bond donor 

and hydrogen bond acceptor. The CoMSIA 

similarity index descriptors were derived using 

the same lattice box as that used in CoMFA 

calculations. In general, similarity indices, AF,K 

between the compounds of interest were 

computed using Equation (1). 

Aq
F,K(j) = - ΣWprobe,k Wike-ar2

iq (1) 

Where q represents a grid point, i is the 

summation index over all atoms of the molecule j 

under computation, Wik is the actual value of the 

physicochemical property k of atom i and Wprobe,k 

is the value of the probe atom [19, 20]. 

 

2.3. Partial Least Square (PLS) Analysis 

The Partial Least Squares (PLS) regression 

technique was used to construct a linear 

correlation between the 3D-field (independent 

variables) and the biological activity values 

(dependent variables). Then the optimum number 

of components was employed to construct 3D-

QSAR models by non-cross-validations to obtain 

the conventional correlation coefficient r2 and 

standard deviation (SE) and significant factor F. 

The analysis procedure was performed by 

combing the bioactivity values (log IC50) and the 

corresponding field descriptor variation. 

Furthermore, the predictive cross-validated 

coefficient of q2 (or r2
cv) and correlation 

coefficient r2
pred was calculated.  

 

2.4. Molecular Docking studies 

Molecular docking was carried out to understand 

the detailed binding model for the active site 

receptor with its ligands. In order to determine the 

appropriate binding conformations of studied 

compounds and check the main factors affecting 

the activity from the 3D-QSAR models, docking 

study for active compound 7e was performed. The 

X-ray crystal structure of CDK5/P25 was 

retrieved from the Protein Data Bank (PDB). At 

the beginning of the docking, all the water and 

ligands were removed and the random hydrogen 

atoms were added. Then the receptor structure 

was minimized in 2000 cycles with Powell 

method in SYBYL [14].  

 

3. RESULT AND DISCUSSION  

3.1. CoMFA and CoMSIA analysis 

The CoMFA and CoMSIA analyses were 

performed corresponding to the strategies 

mentioned earlier. Parameters demonstrate that 

both QSAR models obtained are of high degree of 

confidence and strong predictive ability. The 

training set was used for model building and the 

test set used for an external validation of the 

model. 88 Compounds out of the total 112 

derivatives were used as the training set and 24 

compounds were used as the test set. The test set 

compounds were selected randomly in such a way 
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that the structural diversity and wide range of 

activity in the data set were included. All analyses 

were performed with steric and electrostatic fields 

calculated at each grid point simultaneously. PLS 

analysis was carried out for the training set and 

the test set. The experimental and predicted 

activities of the data set using CoMFA model are 

shown in Table 2. Figure 2a shows the 

relationship between the predicted and 

experimental log IC50 values from the CoMFA 

model.  

 

 

 
Fig. 2. The correlation plots of predicted versus actual 

log IC50 values using the training and test sets based 

on (a) CoMFA model and (b) CoMSIA model. 

 

The statistical results of CoMFA and CoMSIA 

using PLS analysis are presented in Table 3. The 

CoMFA model gave a cross -validated correlation 

coefficient q2= 0.539 with an optimal number of 

principal components of 4 and a non-cross-

validated correlation coefficient r2=0.980 with an 

F value of 744.215 and an estimated standard 

error (SE) equal to 0.065. The external predictive 

r2
pred was 0.968 for the CoMFA (Table 3).  

 
 

Table 3. Statistical results observed for the CoMFA 

and CoMSIA models 

Parametersa CoMFA CoMSIA  

q2 0.539 0.558 

SE 0.065 0.091 

r2 0.980 0.967 

F-values 

NC 

744.215 377.790 

4 5 

Fraction 

S 0.45 0.153 

E 0.55 0.294 

H -- 0.271 

D 

A 

-- 0.281 

-- -- 

r2
pred 0.968 0.945 

a q2, cross-validated correlation coefficient; SE, non-

cross-validated standard error of estimate; NC, number 

of components; r2, non-cross-validated square 

correlation coefficient; F, Fisher’s F-value; r2
pred, 

predictive  r2 in the test set; S, steric field; E, 

electrostatic  field;  H,  hydrophobic  field; D,  H-bond  

donor  field; and  A,  H-bond acceptor field. 

 

In CoMSIA analysis, the five different descriptor 

fields, that is, the hydrophobic (H), hydrogen 

bond donor (D) and acceptor (A), steric (S) and 

electrostatic (E) fields, are not totally independent 

from each other. Table 4 summarizes the 

representative results of different CoMSIA 

descriptor combinations.  

 

 

Table 4. The regression summary analysis of CoMSIA models. 

Parametersa S E H D SD SED SEHD SEHDA 

q2 0.514 0.359 0.491 0.415 0.519 0.529 0.558 0.527 

NC 6 5 5 4 6 6 5 5 

SE  0.207 0.106 0.123 0.115 0.106 0.094 0.091 0.92 

r2 0.826 0.955 0.939 0.947 0.955 0.965 0.967 0.966 

F-Value 83.131 275.619 199.659 231.406 276.014 353.608 377.790 366.367 

Fraction 

S -- -- -- -- 0.407 0.223 0.153 0.125 

E -- -- -- -- -- 0.403 0.294 0.247 

H -- -- -- -- -- -- 0.271 0.225 

D -- -- -- -- 0.593 0.374 0.281 0.243 

A -- -- -- -- -- -- -- 0.160 

r2
pred 0.622 0.87 0.914 0.838 0.894 0.940 0.945 0.941 

aq2, cross-validated correlation coefficient; SE, non-cross-validated standard error of estimate; NC, number of 

components;  r2, non-cross-validated square correlation coefficient; F, Fisher’s F-value; r2
pred, predictive  r2 in the test 

set; S, steric field E, electrostatic  field;  H,  hydrophobic  field; D,  H-bond  donor  field; and  A,  H-bond acceptor field. 
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The CoMSIA model with a combination of steric, 

electrostatic, hydrophobic and hydrogen bond 

donor fields yields the highest cross-validated q2= 

0.558 with 5 components, non-cross-validated r2= 

0.967, F value of 377.790, and r2
pred of 0.945. The 

experimental and predicted activities of the data 

set using CoMSIA model are shown in Table 2. 

Figure 2b shows the relationship between the 

predicted and experimental log IC50 values from 

the CoMSIA model. 

 

3.2. Contour Analysis 

The contour maps were used to display the fields 

around the molecules, and to rationalize where 

changes in each field probably affect the activity 

of the molecule. Contour maps are plotted as the 

percentages of the contribution of CoMFA or 

CoMSIA equation. They show regions where 

variations of steric, electrostatic, hydrophilic, 

hydrogen-bond donor or acceptor nature in the 

structural features of the different molecules lead 

to an increase or decrease in the activity. In the 

contour maps, each colored contour represents 

particular properties such as green contours for 

regions of high steric tolerance (80% 

contribution), yellow for low steric tolerance 

(20% contribution), red contours for regions of 

decreased electrostatic tolerance for positive 

charge (20% contribution), blue for regions for 

decreased electrostatic tolerance for negative 

charge (80% contribution), yellow contours 

represent hydrophobically favored regions (80% 

contribution) and white contours for 

hydrophobically disfavored regions (20% 

contribution).To aid in visualization, the most 

active compound 7e is shown as template 

molecule with the contour maps. In case of 

CoMFA, the green contours denote favorable 

steric interactions and the yellow contours show 

the region where the steric group was not favored. 

Figure 3 illustrates the contours of the steric 

fields, showing in green and in yellow the favored 

and unfavored bulky groups, respectively. In 

CoMFA maps, sterically favorable (green) 

contours are observed (Figure 3a) appearing 

adjacent around the R1 (NHCOCH2Cl) group and 

indole ring of compound 7e as well as the 

presence of a bulky substitution at this position 

should improve biological activity. Conversely, 

the sterically unfavorable regions (20% 

contribution) indicated by a yellow contour 

spotted around the (-SH2CONHN=CHC6H5) of 

compound 7e reveal that less bulky substituents 

are not favorable in that region (Figure 3a). The 

electrostatic effects of the substituents were 

analyzed by the presence of blue and red color 

electrostatic contour map. The CoMFA 

electrostatic map (Figure 3b) displays red 

contours where the partial negative charge is 

associated with increased activity (80% 

contribution) while the blue contours indicate 

regions where the electropositive properties of 

molecules cause an increase in the activity. 

In CoMSIA (SEHD) contour map for the 7e most 

active compound is shown in Figure 4. The 

CoMSIA contour maps consist of steric, 

electrostatic, and hydrophobic and hydrogen bond 

donor (SEHD) fields. Figure 4a where the 

sterically favored regions are shown in green and 

disfavored regions are shown in yellow, 

respectively. Figure 4b depicts the electrostatic 

contour maps obtained from the CoMSIA model, 

where blue contours represent the favorable 

electropositive regions and red contours account 

for the favorable electronegative regions, 

respectively. Figure 4c shows the CoMSIA 

hydrophobic contour map, where the yellow 

(hydrophobic favorable) and white (hydrophobic 

unfavorable) contours represent 80% and 20% 

contributions, respectively. 

 

 
 

 
Fig. 3. CoMFA steric and electrostatic maps. (a) 

Sterically favorable and disfavorable areas are shown in 

green and yellow, respectively and (b) electrostatic 

field contours shown in red (electronegative 

substituents favored) and blue (electropositive 

substituents favored) colors. 
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Figure 4d shows the CoMSIA hydrogen-bond 

donor plot, the cyan contours indicate regions 

where hydrogen bond donor substituents on the 

ligands are favored and the purple contours 

represent areas where hydrogen bond donor 

substituents, are disfavored. Cyan contour plot 

located around the R1 and R2 positions and 

indole ring shows that hydrogen bond donor 

groups exhibit the negative effect on the 

biological activity. 

 

 
 

 
 

 
 

 
Fig. 4. Compound 7e (most active) mapped on 

CoMSIA: (a) Steric coefficient contour map. Green 

contours refer to sterically favored regions; yellow 

contours indicate disfavored areas, (b) Electrostatic 

coefficient contour map. Red contours refer to regions 

where negatively charged substituents are disfavored; 

blue contours indicate regions where negatively 

charged substituents are favored, (c) Hydrophobic 

coefficient contour map. Yellow contours refer to 

regions where hydrophobic substituents are favored; 

white contours indicate regions where hydrophilic 

substituents are disfavored, (d) hydrogen bond donor 

contour maps. Cyan contours refer to regions where H-

bond donor substituents are favored; purple contours 

indicate regions where H-bond donor substituents are 

disfavored. 

3.3. Docking Results 

Docking studies were applied to investigate the 

binding mode between CDK5/P25 with 7e 

molecule. In Figure 5a, the hydrogen bonding 

(dashed lines) interactions between the reference 

compound 7e with the highest inhibitory activity 

was shown and the key residues with two amino 

acids (SER229 and LYS177) and total of four 

hydrogen bonds were formed. Indole ring 

performed two interactions with SER229 and R1 

position and two interactions with LYS177. 

In Figure 5b, the MOLCAD Multi-Channel cavity 

depth potential surface structure of the binding 

site within the compound 7e is displayed. In 

Figure 5b, hydrogen bonding of the R1 position 

and Indole ring of compound 7e is observed in a 

cyan area. In each panel, compound 7e is shown 

as ball and stick representation; hydrogen bonds 

are shown as dashed yellow lines; residues are 

shown as line representation.  

 

 
 

 Fig.5 (a, b). Structure of compound 7e docked into 

CDK5/P25.  

 

4. CONCLUSION 

In this paper, the ligand- and receptor-based 3D-

QSAR studies of 112 of triazolyl thiophene 

derivatives as a series of cdk5/p25 inhibitors 

performed using CoMFA and CoMSIA tools. 

From the resultant models, the high q2 (r2
cv) and 

r2
pred values proved that the 3D-QSAR models 

developed in this work are statistically reliable 

and predictable. On the basis of the CoMFA and 

CoMSIA model contour maps, significant regions 

for steric, electrostatic, hydrophobic, H-bond 

interactions were identified to enhance the 

bioactivity. The obtained results can be used as a 

guideline to design new potent cdk5/p25 

inhibitors. 
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با استفاده  CDK5/P25 یهاها به عنوان بازدارندهوفنیت لیآزول یتر یمولکول یسازمطالعه مدل

  یمولکول نگیو داک 3D-QSAR یهااز روش

 
 2، ابوذر قنبری،*1زهرا گرکانی نژاد

رانی، اباهنر کرمان، کرمان دی، دانشگاه شه، دانشکده علومیمیگروه ش. 1  

  هران، ایرانگروه عملیات و نگهداری مپنا، خیابان مصدق شمالی، بلوار میرداماد، ت. 2

 1911  اسفند 21تاریخ پذیرش:             1911  دیماه  11تاریخ دریافت: 

 

 چکیده

می باشند. یک سری جدید از تری آزولیل تیوفن ها  برای طراحی دارو بر پایه لیگاند بسیار مفید (3D-QSAR)فعالیت سه بعدی-رتباط کمی ساختارروش های ا
سازی انجام شده است. مدل (CoMSIA) و 3D-QSAR (CoMFA) هایانتخاب شده اند و با استفاده از روش CDK5/P25 به عنوان بازدارنده های

    (r2) و ضرایب همبستگی 13528و  r2cv (q2) 13582 به ترتیب ضرایب همبستگی ارزیابی متقاطع (CoMSIA) و (CoMFA) برای مدل های بهینه
مولکول برای بدست آوردن مدل ها استفاده شده  90مولکول و یک سری پیش بینی شامل  88بدست آمده است. از یک سری آموزشی شامل  132.0 و 13281

از داکینگ مولکولی برای بررسی اتصال لیگاند و بدست آمده است.  13205و  132.8به ترتیب  (r2pred) است. ضرایب همبستگی مدل ها برای سری پیش بینی

  .گیرنده استفاده شده است. نتایج حاصل از داکینگ مولکولی می تواند در طراحی بازدارنده های جدید مفید باشد
 

 هاي کلیديواژه

3D-QSARیبازدارنده ها ؛یمولکول نگیداک ؛ CDK5/P25مریآلزا یماریب ؛وفنیت لیآزول یتر ؛. 
 
 

  


