In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

Department of Chemistry, Payame Noor University, PO Box 19395-4697, Tehran, Iran

Abstract

Molybdenum disulfide as a transition metal dichalcogenide was prepared by a hydrothermal method and hybridized with graphene oxide (MoS2/GO). The as-prepared materials were investigated by Fourier transform infra-red spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray elemental analysis (EDX) techniques as well transmission electron microscopy (TEM) image. The nanomaterial with its electrocatalytic properties was applied as an electro-nanocatalyst for loading on a glassy carbon electrode (MoS2/GO-GCE) for detection of carbamazepine as an anti-epileptic in real body samples. The simple and low-cost developed electrochemical sensor detected carbamazepine with a vast linear concentration range(30-350nM), very low detection limit about 6.0nM and significant sensitivity equal to 0.134µA/nM.

Keywords

[1]     F.J.E.  Vajda, S. Hollingworth, J. Graham, A.A. Hitchcock, T.J. O’Brien, C.M. Lander, M.J. Eadie, Changing patterns of antiepileptic drug use in pregnant Australian women. Acta Neurol. Scand, 2 (2010) 89-93.
[2]     G. Özer, Y. Ünal, G. Kutlu, Y.B. Gömceli, L.E. İnan, A retrospective analysis of restless legs syndrome in epileptic patients, ACEM, 1 (2018) 15-17.
[3]     M. Vosough, S. Ghafghazi, M. Sabetkasaei, Chemometrics enhanced HPLC–DAD performance for rapid quantification of carbamazepine and phenobarbital in human serum samples, Talanta, 119(2014) 17-23.
[4]     S. Ghafghazi, T.M. Zanjani, M.  Vosough, M. Sabetkasaei, Interference-free determination of carbamazepine in human serum using high performance liquid chromatography:a comprehensive research with three-way calibration methods, IJPR, 1 (2017) 120.
[5]     H. Breton, M.  Cociglio, F. Bressolle, H. Peyriere, J.P. Blayac, D. Hillaire-Buys, Liquid chromatography–electrospray mass spectrometry determination of carbamazepine, oxcarbazepine and eight of their metabolites in human plasma, J. Chromatogr, 2 (2005) 80-90.
[6]     T.A. Rodina, E.S. Mel’Nikov, A.V. Sokolov, A.B. Prokof’Ev, V.V. Arkhipov, A.A. Aksenov, D.L. Pozdnyakov, Rapid HPLC-MS/MS determination of carbamazepine and carbamazepine-10, 11-epoxide, Pharm. Chem. J, 6 (2016) 419-423.
[7]     C. Huang, Q. He, H. Chen, Flow injection photochemical spectrofluorimetry for the determination of carbamazepine in pharmaceutical preparations, J Pharm Biomed Anal, 1 (2002) 59-65.
[8]     G.M. Escandar, D.G. Gómez, A.E. Mansilla, A.M. de la Peña, H.C. Goicoechea, Determination of carbamazepine in serum and pharmaceutical preparations using immobilization on a nylon support and fluorescence detection, Anal. Chim. Acta, 2 (2004) 161-170.
[9]     B. Hemmateenejad, Z. Rezaei, S. Khabnadideh, M. Saffari, A PLS-based extractive spectrophotometric method for simultaneous determination of carbamazepine and carbamazepine-10, 11-epoxide in plasma and comparison with HPLC, Spectrochim. Acta A Mol. Biomol. Spectrosc, 3 (2007) 718-724.
[10] Z. Rezaei, B. Hemmateenejad, S. Khabnadideh, M. Gorgin, Simultaneous spectrophotometric determination of carbamazepine and phenytoin in serum by PLS regression and comparison with HPLC, Talanta, 1 (2005) 21-28.
[11] M. A. García-García, O. Dominguez-Renedo, A. Alonso-Lomillo, Arcos-Martínez, M. J. Electrochemical methods of carbamazepine determination, Sens. Lett, 4 (2009), 586-591.
[12] S.S. Kalanur, J. Seetharamappa, Electrochemical oxidation of bioactive carbamazepine and its interaction with DNA,  Anal. Lett, 4 (2010) 618-630.
[13] H.Y. Wang, M.L. Pan, Y.O. Su, S.C. Tsai, C. H. Kao, S.S. Sun, W.Y, Comparison of Differential Pulse Voltammetry (DPV)—a new method of carbamazepine analysis—with Fluorescence Polarization Immunoassay (FPIA), J.Electroanal. Chem, 4(2011) 415-420.
[14] F. Zaviska, P. Drogui, J.F. Blais, G. Mercier, P. Lafrance, Experimental design methodology applied to electrochemical oxidation of the herbicide atrazine using Ti/IrO2 and Ti/SnO2 circular anode electrodes, J. Hazard. Mater., 2 (2011) 1499-1507.
[15] M. Fathi, M.S. Safavi, S. Mahdavi, S. Mirzazadeh, V. Charkhesht, A. Mardanifar, M. Mehdipour, Co–P alloy matrix composite deposits reinforced by nano-MoS2 solid lubricant: An alternative tribological coating to hard chromium coatings, Tribol. Int, 159 (2021) 106956.
[16] Y.H. Wang, K.J. Huang, X. Wu, Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review, Biosens. Bioelectron, 97 (2017) 305-316.
[17] Y.H. Wang, L.L. He, K.J. Huang, Y.X. Chen, S.Y. Wang, Z.H. Liu, D. Li, Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays, ANLST, 9 (2019) 2849-2866.
[18] A. Lerf, H. He, M. Forster, J.  Kalinowski, Structure of graphite oxide revisited, J. Phys. Chem. B, 23 (1998) 4477-4482.
[19] Z. Wang, L. Ma, W. Chen, G. Huang, D. Chen, L. Wang, J.Y. Lee, Facile synthesis of MoS 2/graphene composites: effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage, RSC Adv, 44 (2013) 21675-21684.
[20] S.S. Kalanur, J. Seetharamappa, Electrochemical oxidation of bioactive carbamazepine and its interaction with DNA, Anal. Lett,43 (2010) 618-630.