In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, IRAN

2 Department of Animal Science Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract


The aim of the present study was to develop electrochemical sensors based on pencil graphite electrode modified with green-caped ZnO, CdO nano particles and potassium tetra chloroplatinate (II), for a simple and fast simultaneous microextraction and determination of Aspirin (ASA) and Ibuprofen (IBU). The nanoparticles were initially synthesized by the use of four vegetable extracts including garlic, onion, green onion and cabbage. The fabricated nanoparticles and platinum were then deposited on the surface of a pencil graphite electrode and was used as a working electrode in a three electrodes system. The Taguchi experimental design was employed for investigating the effects different parameters. For this purpose, a Taguchi L16 orthogonal array (OA) design was applied and the results were confirmed by the ANOVA test. The electrochemical behavior of ASA and IBU at the modified electrodes, were studied. The calibration curves were linear in the range of 5.17to 134.0 µg.mL-1 and 3.13 to 231.0 µg.mL-1 for ASA and IBU respectively. The limits of detection for ASA and IBU was calculated to be 0.50 and 0.42 µg.mL-1 respectively. The modified sensor showed good performance for simultaneous analysis of ASA and IBU in biological and pharmaceutical samples.

Keywords

  •  

    • Ausina, J. R. Branco, T. M. Demaria, et al, Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide‑dependent endoplasmic reticulum stress and apoptosis, Sci. Rep. 10 (2020) 19617-32.
    • Anuar, A.H. Sabri, T.J. Bustami, K. Abdulhamid, Development and characterization of Ibuprofen-loaded nano emulsion with enganced oral bioavailability, J. Heliyon. 6 (2020) e 04570.
    • Sultana, S. Arayne, S. Nadirali, Synthesis and Spectrophotometric Determination Ibuprofen Charge Transfer Complexes with P-Chloranil, 7, 7, 8, 8-Tetracyano quino dimethane, Bromothymol Blue, Methyl Orange and Picric Acid, J. Bioanal. Biomed. 5 (2013) 122-129.
    • Wudarska, E. Chrzescijanska, E. Kusmierek, J. Rynkowski, Electrochemical Behavior of 2-(p-isobutylphenyl) propionic Acid at Platinum Electrode, Int. J. Electrochem. Sci. 10 (2015) 9433-42.
    • Suresh, E. Sundaram, B. Kavitha, S. M. Rayappan, Simultaneous electrochemical determination of paracetamol and ibuprofen at the glassy carbon electrode, J. Adv. Chem. Sci. 2 (2016) 369-372.
    • Zayed, H. Arida, Voltammetric Determination of the Cough Suppressant Drug Dropropizine in its Pharmaceutical Formulations and Human Urine, Int. J. Electrochem. Sci. 10 (2015) 3250-3259.
    • T. Rajendran, K. Huszno, G. Debowski, et al, Tissue-based biosensor for monitoring the antioxidant effect of orally administered drugs in the intestine, Bioelectrochemistry. 138 (2021) 107720-27.
    • Patrono, The Multifaceted Clinical Readouts of Platelet Inhibition by Low-Dose Aspirin, J. Am. Coll. Cardiol. 66 (2015) 74-85.
    • Motoc, Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution using HKUST-1 metal-organic framework-carbon nano fiber composite electrode, Sensors. 16 (2016) 1-10.
    • Chen, X. wu, T. Luan, et al, Sample preparation and instrumental methods for illicit drugs in environmental and biological samples, J. Chromatogr. A. 1640 (2021)14961-70.
    • B. Lima, E. O. Faria, R. H. O. Montes, et al, Electrochemical Oxidation of Ibuprofen and Its Voltammetric Determination at a Boron-Doped Diamond Electrode, Electroanal. 25 (2013) 1585-1588.
    • Cao, J. Kiely, M. Piano, R. Luxton, Nanoparticle-based 3D membrane for impedimetric biosensor applications, Bioelectrochemistry. 136 (2020) 107593-107603.
    • Manjunatha, C. C. Vidyasagar, Y. A. Nayaka, Voltammetric Studies of Aspirin in Pharmaceutical Sample Using C tab - Pencil Graphite Electrode, Org. Med. Chem. 1 (2017) 1-5.
    • Dogan-topal, B. Bozal-palabiyik, S. A. Ozkan, B. Uslu, Electrochemical oxidation mechanism of anticancer drug nilotinib, Rev. Roum. Chim. 60 (2015) 467-475.
    • I. Gowda, A.T. Buddanavar, S.T. Nandibewoor, Fabrication of multiwalled carbon nanotube-surfactant modified sensor for the direct determination of toxic drug 4-aminoantipyrine, J. Pharm. Anal. 5 (2015) 231-238.
    • Kruanetr, R. Prabhu, P. Pollard, C. Fernandez, Pharmaceutical electrochemistry: The electrochemical detection of aspirin utilising screen printed graphene electrodes as sensors platforms, Surf. Eng. Appl. Electrochem. 51 (2015) 283-289.
    • Bhumi, N. Savithramma, Biological Synthesis of Zinc oxide Nanoparticles from Catharanthus roseus (l.) G. Don. Leaf extract and validation for antibacterial activity, Int. J. Drug. Dev & Res. 6 (2014) 208-214.
    • Pourbeyram, Kh. Mehdizadeh, Nonenzymatic glucose sensor based on disposable pencil graphite electrode modified by copper nanoparticles, J. Food. Drug. Anal. 24 (2016) 894-902.
    • Hatamluyi, F. Lorestani, Z. Es’haghi, Au/Pd@rGO nanocomposite decorated
      with poly (L-Cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs, Ifosfamide and Etoposide, Biosens. Bioelectron. 30 (2018) 22-29.
    • Es'haghi, T. Heidari, E. Mazloomi, In situ pre-concentration and voltammetric determination of trace lead and cadmium by a novel ionic liquid mediated hollow fiber graphite electrode and design of experiments via Taguchi method, Electrochim. Acta. 147 (2014) 279-287.
    • Mohammed. F. Alsaggaf Ashraf, E. B. Elbaz Sherin, H. M. Shaaban, Anticancer and Antibacterial Activity of Cadmium Sulfide Nanoparticles by Aspergillus niger, Adv. Poly. Tech. (2020), ID 4909054.
    • Naghian, E. Marzi Khosrowshahi, E. Sohouli, et al, Electrochemical oxidation and determination of antiviral drug acyclovir by modified carbon paste electrode with magnetic CdO nanoparticles, Fron. Chem. 8 (2020) 689 -699.
    • Sowmya, G. Megala, S. Venkat Kumar, Green approach on a chiening zinc oxide nanoparticles and its potential bacterical as well as antioxidant activity, IJPSR. 11 (2020) 1350-57.
    • M. Mahmoud, R. B. Kassab, A. E. Abdel-moneim, Zinc oxide nanoparticles ameliorate aluminum chloride-induced hepato-renal oxidative stress and inflammation in rats, Int. J. Pharm. Pharm. Sci. 12 (2020) 11-20.
    • Green and Chemical Syntheses of CdO NPs: A Comparative Study for Yield Attributes, Biological Characteristics, and Toxicity Concerns, M. Nasrullah, F. Zareen Gul, S. Hanif, et al, Omega. 5 (2020) 5739-5747.
    • AsgharS. HabibW. Zaman, et al, Synthesis and characterization of microbial mediated cadmium oxide nanoparticles, Epub. 83 (2020) 1574-1584.
    • Azama, A. Ayazb, M.Younas, et al, Microbial synthesized cadmium oxide nanoparticles induce oxidative stress and protein leakage in bacterial cells, Microb. Pathog. 114 (2020) 104188-95.
    • Tabatabaee, A. A. Mozafari, M. Ghassemzadeh, M. R. Nateghi, I. Abedini, A Simple Method for Synthesis of Cadmium Oxide Nanoparticles Using Polyethylene Glycol. Bulgar. Chem. Commun. 45(2013) 90-92.
    • S. Aldwayyan, F. M. Al-Jekhedab, et al, Synthesis and Characterization of CdO Nanoparticles Starting from Organometalic Dmphen-CdI2 complex, Int. J. Electrochem. Sci. 8 (2016) 10506-10514.
    • N. Hasnidawani, H. N. Azlina, et al, Synthesis of ZnO Nanostructures Using Sol Gel Method, Proced. Chem. 19 (2016) 211-216.
    • Narayana, S.A. Bhat, A. Fathima, et al, Green and low-cost synthesis of Zinc Oxide nanoparticles and their application in transistor-based carbon monoxide sensing, RSC. Adv. 10 (2020) 13532-13542.
    • G. Demissie, F. K. Sabir, G. D. Edossa, B. A. Gonfa, Synthesis of Zinc Oxide Nanoparticles Using Leaf Extract of Lippia adoensis (Koseret) and Evaluation of Its Antibacterial Activity, J. Chem. (2020) ID 7459042-50.
    • A. Sadraei, Simple Method for Preparation of Nano-sized ZnO, Res & Rev. J. Chem.5 (2016) 45-49.
    • M. George, M. T. Aswani, M. V. Pavan Kumar, B. Varghese, Green synthesis of ZnO nanoparticles, AIP Conference Proceedings. 2263 (2020) 020001-8.
    • R. Ghorbani, F. ParsaMehr, H. Pazoki, M. Rahmani, Synthesis of ZnO Nanoparticles by Precipitation Method, Orient. J. Chem. 31 (2015) 1219-1221.
    • Imran, K. Vaishali, et al, Platinum and zinc oxide modified carbon nitride electrode as non-enzymatic highly selective and resuable electrochemical diabetic sensor in human blood, Bioelectrochemistry. 137 (2020) 107645-55.
    • B. Tanuja, B. E. Kumara Swamy, K. Vasantakumar Pai, Cyclosporine/SDS Modified Carbon Paste Electrode for Electrochemical Study of Dopamine: A Cyclic Voltammetric Study. Insights. Anal. Electrochem. 2 (2016) 2-8. doi: 10.21767/2470-9867.100016
    • Krukiewicz, A. Kowalik, R. Turczyn, M. J. P. Biggs. Invitro attenuation of astrocyte activation and neurion flammation through ibuprofen-doping of poly (3,4-ethylenedioxy pyrrole) formulations. Bioelectrochemistry. 134 (2020) 107528.-37.
    • M. Do- Prado, F. H. Cincotto, S. A. S. Machado, Spectro electrochemical study of acetylsalicylic acid in neutral medium and its quantification in clinical and environmental samples, Electrochim. Acta. 233 (2017) 105-112.
    • Manjunatha, C. C. Vidyasagar, Y. Arthoba Nayak, Voltammetric Studies of Aspirin in Pharmaceutical Sample Using C tab - Pencil Graphite Electrode, Organic & Medicinal. Chem. IJ. 3 (2017). ID.555567.
    • Ghadimi, R. M. A. Tehrani, W. J. Basirun, et al, Electrochemical determination of aspirin and caffeine at MWCNTs-poly-4- vinyl pyridine composite modified electrode, J. Taiwan. Inst. Chem. 65 (2016) 101-109.
    • Yi-git, Y. Yardım, M. Celebi, A. Levent, Z. Senturk, Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations, Talanta. 158 (2016) 21-29.
    • M. Saeed, N. Q. Ahmed, Estimation of paracetamol, aspirin, ibuprofen, codeine and caffeine in some formulated commercial dosage using UV spectroscopic method, Eur. J. Pharm. Med. Res. 4 (2017) 33-38.
    • Liang, Y. Huang, W. Liu, W. Zuo, et al, Colorimetric Detection of Salicylic Acid in Aspirin Using MIL-53(Fe) Nanozyme, Front. Chem. 8 (2020) 671-80.
    • S. Jalbani, A.R. Solangi, M.Y. Khuhawar, et al, Gas Chromatographic and Spectrophotometric Determination of Diclofenac Sodium, Ibuprofen, and Mefenamic Acid in Urine and Blood Samples, Turk. J. Pharm. Sci. 17 (2020) 465-473.
    • Encarnacao, A. Aguiar, C. Palito, et al, Development and validation of a RP-HPLC method for the simultaneous analysis of paracetamol, ibuprofen, olanzapine, and simvastatin during microalgae bioremediation, Methods. X. 7 (2020) 101083-89.
    • M. Madikizel, L. Chimuka, Simultaneous determination of naproxen, ibuprofen and diclofenac in waste water using solid-phase extraction with high performance liquid chromatography, Water. 43 (2017) 264-274.