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Abstract 

Ethanol (EtOH) purification is a pivotal research pursuit, with liquid-liquid extraction emerging as a significant purification 
methodology. This study focuses on utilizing benzene solvent for EtOH purification and investigates the liquid-liquid 
equilibrium (LLE) within three-component systems comprising EtOH, water, and benzene. Thermodynamic modeling of 
EtOH-benzene-water systems at temperatures of 20 °C, 30 °C, 40 °C, and 55 °C was conducted. In this paper, the equations 

used for predicting mole fraction include Non-Random Two-Liquid (NRTL), Adaptive Neuro-Fuzzy Inference System 
(ANFIS), and Multilayer Perceptron Artificial Neural Network (MLP-ANN). First, the equation parameters were optimized 
using the particle swarm optimization (PSO) algorithm to employ the NRTL equation Experimental data was used to train 
the MLP-ANN and ANFIS methods, and the same experimental datasets were used for all models.  These models estimated 
integral components across both phases, revealing effective system control across all methodologies. However, the 
comparative analysis indicated the superior performance of the MLP-ANN and ANFIS methods over the NRTL model. 
The Root Mean Square Deviation (RMSD) errors for the NRTL, MLP-ANN, and ANFIS models were 0.0253, 0.0035, and 
0.0017, respectively. These results indicate that despite the low prediction error of all three methods, the NRTL equation 

has the highest error, and the ANFIS method has the lowest mole fraction prediction error.  
 
Keywords 
Liquid-liquid equilibria; Adaptive neuro-fuzzy inference system; Artificial neural network; NRTL model; Partial Swarm 
Optimization Algorithm 

1.INTRODUCTION 

There is a growing demand for purer products and 

improved efficiency in the chemical industry, 

leading to ongoing research into distillation 

techniques  [1]. Distillation is a crucial separation 

process in the chemical and petrochemical 

industries, aiming to reduce energy consumption 

by utilizing the varying volatility of components 

[2]. However, current industrial practices for 
designing distillation processes can heavily rely on 

heuristic simulations, requiring numerous specific 

design specifications [3]. 

EtOH is a significant organic solvent used in 

thermometers and other applications, including 

fuel. Its production typically involves either the 

hydration of ethylene as an industrial feedstock or 

fermentation for fuel purposes. Unfortunately, 

most EtOH production processes results in an 

EtOH/water mixture, requiring distillation for 

purification. However, the presence of an 

EtOH/water azeotrope limits distillation, 

preventing the production of highly pure EtOH 

alone [4]. 

Nevertheless, azeotropic distillation is still the 

preferred method for obtaining highly pure EtOH 

in large-scale production. Furthermore, 

introducing a third component, benzene alters the 

vapor-liquid equilibrium and enables the formation 

of a new ternary azeotrope comprising EtOH, 
water, and benzene. The ternary azeotrope with the 

lower boiling point can be removed selectively, 

resulting in anhydrous EtOH [5]. 

Several methods have been used in the industry to 

separate azeotropic compositions. These methods 

include adding a third component that alters the 

vapor-liquid equilibrium (such as extractive 

distillation using a higher boiling solvent) and 

using heterogeneous azeotropic distillation to 

capture chemical components. However, vacuum 

distillation, which can be used to obtain absolute 
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ethanol from an azeotropic feed, currently needs to 

be economically feasible [6, 7]. 

Therefore, this uses benzene as an entraining agent 

to break the azeotrope. The separation of water-

EtOH mixtures has garnered significant research 

attention due to the potential utilization of EtOH as 

a sustainable fuel. Various technologies 

(pervaporation, zeolite adsorption, pressure-swing 

distillation, azeotropic distillation, extractive 

distillation, etc.) have been proposed for separating 
EtOH-water mixtures. Distillation is the primary 

method for separating ethanol and water, 

accounting for over 90% of all separation 

processes [8]. 

When multiple components are mixed, their 

behavior diverges from that of pure substances due 

to intermolecular interactions among their 

molecules. Consequently, determining the 

equilibrium behavior of phase systems becomes 

intricate. Practical measurements of 

thermophysical properties for systems such as 
water-EtOH-benzene involve significant costs, 

challenges, and time investment, particularly due 

to the impracticality of obtaining data across all 

necessary temperatures and pressures. The Non-

Random Two-Liquid (NRTL) model, a significant 

tool in predicting phase equilibrium in non-ideal 

solutions, was pioneered by Renon and Prausnitz 

in 1968 [9]. This model, designed to address 

systems deviating from ideality, harnesses the 

concept of non-random intermolecular energies 

and their impact on solution behavior. By 

incorporating intermolecular interactions into its 
equations, the NRTL model can forecast solution 

phase behavior [10]. However, it does face 

challenges, particularly the requirement for 

experimental data to determine its parameters, 

which involves solving highly nonlinear equations. 

Furthermore, the model has limitations under 

specific conditions, such as at critical points [11]. 

 Consequently, computational prediction methods 

such as artificial neural networks (ANN) and ; 

Adaptive neuro-fuzzy inference system (ANFIS) 

have recently gained considerable attention due to 
their proven reliability. 

Computer-based methods have made significant 

contributions to the accurate prediction of material 

properties and characteristics. Techniques like 

ANN and ANFIS are particularly effective in 

determining the complex nonlinear relationships 

between input and output characteristics. These 

models are especially useful for systems whose 

equations cannot be accurately predicted  [12, 13]. 

The applications of ANN are diverse, ranging from 

enhanced oil recovery, drilling, and well 

completion to predicting parameters like activity 
coefficients and kinetic coefficients [14-18]. 

Similarly, ANFIS has found use in predicting 

properties in various domains such as rubber, 

carbon dioxide solubility, CO2 capture in amines, 

density of ionic mixtures, and thermal conductivity 

[19-23]. 

The investigation utilizes benzene-water-EtOH 

phase equilibrium data at various temperatures to 

determine the molar composition of constituents 

using the NRTL equation. Initially, the NRTL 

equation parameters are optimized using 

experimental data and the PSO algorithm. 

Additionally, ANN and ANFIS methodologies are 
employed to further explore and optimize the 

system's modeling. These methodologies, which 

rely on experimental data, provide robust modeling 

capabilities. Consequently, this study leveraged 

ANFIS and ANN techniques to effectively 

determine the molar composition of components in 

LLE, contributing to comprehensive system 

analysis and modeling. 

 
2.EXPERIMENTAL 

2.1.Parameter optimization using the Partial 

Swarm Optimization method  
The PSO algorithm, developed by R.C. Eberhart in 

1995 [24], takes inspiration from the collective 

behaviors observed in animal swarms. In this 

computational method, individual particles are 

endowed with initial randomized attributes, 

including positions and velocities [25]. These 

particles iteratively explore the solution space, 

aiming to locate optimal solutions by moving 

towards promising regions, mirroring the 

behaviors of natural swarms. Nevertheless, a 

significant downside of PSO is its tendency for 
slow convergence, where the algorithm may need 

numerous iterations to reach an optimal solution. 

Researchers have significantly addressed this 

challenge through various strategies and 

enhancements [26]. 

In determining the LLE within ternary systems, 

equations that govern the activity of individual 

components across two coexisting phases are 

utilized. These equations provide valuable insights 

into the dynamics and interplay among 

constituents in the liquid phases, enabling the 

precise computation of equilibrium compositions. 
By considering activity coefficients and their 

correlation with mole fractions of the components, 

the prediction of phase equilibrium is become 

more precise, fostering a deeper comprehension of 

the studied system's behavior (Equation 1): 

xi
′γi
′ = xi

′′γi
′′     i=1,2,3 (1) 

Where xi and 𝛾 i represent the mole fraction and 

activity coefficient of component i, respectively, 

for the two phases denoted ′ and ″. 

The NRTL equation is a powerful tool for 

assessing the activity coefficients of individual 

components within a system. This equation , with 

its ability to accommodates the non-random nature 

and inherent asymmetry in molecule distribution 
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across liquid phases. By integrating parameters 

representing molecular size, shape, and polarity, 

the NRTL equation offers a robust framework for 

estimating activity coefficients. Through the 

analysis of these coefficients, the intricate 

dynamics and intermolecular interactions within 

ternary systems can be precisely delineated, 

thereby enabling reliable predictions of LLE. This 

precision and depth of understanding instill 

confidence in the NRTL equation's application. 
The NRTL equation and its constants are 

according to equations 2-7 [9]: 

lnγi =
∑ τjiGjixj
N
j=1

∑ Gkixk 
N
k=1

+∑
xjGij

∑ Gkjxk
N
k=1

(τij

N

j=1

−
∑ τljGljxl
N
l=1

∑ Gkjxk 
N
k=1

) 

 

(2) 

 

 

Gji = exp (−αjiτji)                                         (3) 

τji = Aji +
Bji

T
                                                       (4) 

αji = αij                                                                (5) 

τji ≠ τij                                                                 (6) 

τii = τjj = 0                                                         (7) 

Where  Gji  and τji  are binary NRTL parameters, 

Aij and Bij are the fitting parameters, αji is a non-

randomness parameter, and T is the temperature 

(K).  

The following objective function is used for 

parameter regression (Equation 8): 

Fa =∑∑(xik
′ γik

′ − xik
′′ γik

′′ )2
M

k=1

3

i=1

 

 

 

(8) 

 

Equation 9 is derived from equation 8 to facilitate 

correlation quality assessment. 

Fa =∑∑σik

N

k=1

3

i=1

 

 

(9) 

 

σik =

{
 
 

 
 

 
(xik
′ × γik

′ )

(xik
′′ × γik

′′ )
− 1,    if 

(xik
′ × γik

′ )

(xik
′′ × γik

′′ )
≥ 1 

(xik
′′ × γik

′′ )

(xik
′ × γik

′ )
− 1,    if 

(xik
′′ × γik

′′ )

(xik
′ × γik

′ )
< 1

   

Equation 9, which encapsulates the objective 

function pertinent to parameter estimation, is 

minimized, elucidating the values of parameters 

within the NRTL equation. This optimization 

endeavor reduces the disparity between calculated 

and empirically observed equilibrium data. The 
efficacy of regression, denoting the model's 

fidelity to experimental findings, is commonly 

assessed through metrics such as the mean relative 

error (MRE), R-squared, and RMSD. 

MRE =
1

N
∑

|xi
exp

− xi
calc|

xi
exp

N

i=1

 

 

 

(10) 

 

Rsquare

= 1−
∑ (xi

exp
− xi

calc)
2N

i=1

∑ (xi
exp

− x̅)
2N

i=1

  , x̅

=
1

N
∑xi

exp

N

i=1

 

 

 

(11) 

 

RMSD = √(
∑ (xi

exp
− xi

calc)
2N

i=1

6N
) 

 

(12) 

 

To accurately determine the values of x1, x2, and 

x3, it is necessary to solve the machine of nonlinear 
equations accurately. Numerical methods such as 

Newton's or similar techniques are needed for the 

machine. The arc-length continuation method is 

another exact method for solving the machine of 

nonlinear equations [27]. It is linear according to 

equation 2, and the device for the nonlinear 

equations has 3 equations corresponding to the 

three components of the two-phase system. 

{

f1 = x1
′ γ1
′ − x1

′′γ1
′′ = 0

f2 = x2
′ γ2
′ − x2

′′γ2
′′ = 0

f3 = 1 − x1
′′ − x2

′′ − x3
′′ = 0

 (13) 

Equation 13 involves molar components in the 

phase " that are currently unknown. To determine 

their exact value, we use Newton's method, which 

requires the determination of the Jacobian matrix. 

The activity coefficient depends on the number of 

molar components. Additionally, f3 in equation 8 

can be the same as f1 and considered f2. However, 

since the problem's condition states that the sum of 

the molar components in the second phase equals 

1, this condition is used to solve the equation. 

[
 
 
 
 
 
 
∂f1
∂x1

′′

∂f1
∂x2

′′

∂f1
∂x3

′′

∂f2
∂x1

′′

∂f2
∂x2

′′

∂f2
∂x2

′′

∂f3
∂x1

′′

∂f3
∂x2

′′

∂f3
∂x3

′′]
 
 
 
 
 
 

× [

∆x1
′′

∆x2
′′

∆x3
′′

]

= −[
f1
f2
f3

]  ; ∆x = xn+1 − xn 

 

(14) 

To solve equation 14, it is important to start with 

an initial guess for all three components. Once the 

initial guess is determined, the Jacobian matrix and 

the values of f are specified. Using these, we can 

determine the value of ∆x and then obtain the next 

value. For a better understanding, refer to Figure 1 

for calculating the molar components in the phase 

'; this method can also be used. 

(2-6) 

 

https://doi.org/10.30473/ijac.2024.71186.1296


Iranian Journal of Analytical Chemistry 10 (2023) 1-15 | 4 

DOI: 10.30473/ijac.2024.71186.1296 

 
Fig. 1. Flowchart for solving sets of nonlinear equations 
using Newton's method 

 

2.2.Artificial Neural Network 

Neural networks imitate the structure and 

functionality of biological neural networks present 
in the human brain [28]. Computational models 

known as ANNs have been developed based on 

this paradigm. Information processing in ANNs 

occurs through interconnected units called 

neurons. [29]. Each neuron processes input data by 

applying weighted coefficients, activating a 

specified function, and integrating outcomes with 

bias or threshold values to generate an output [30]. 

Determining weight and bias coefficients in neural 

networks typically involves the feed-forward 

approach. This method involves iteratively 

providing input data to neurons and adjusting 

weights and biases to minimize output errors. This 

iterative refinement process is essential to neural 

networks' learning mechanism.  [31]. 

Neural networks are valuable tools for analyzing 

complex systems characterized by intricate 

interrelations among components. One of the 

foundational architectures is the perceptron, which 

represents the simplest neural network structure 

comprising input, neuron, and output layers. 

However, real-world applications typically 
leverage multiple layers of neurons, giving rise to 

the Multi-Layer perceptron ANN (MLP-ANN). 

These MLP-ANNs offer enhanced capabilities to 

discern and model convoluted relationships within 

datasets, rendering them adept pattern recognition, 

classification, and regression tasks [32]. 

 

2.3.Adaptive Neuro-Fuzzy Inference System  

The inception of fuzzy systems dates back to 1965 

when Dr. Lotf Alizadeh [33] introduced the 

concept, witnessing a surge in applications over 
subsequent decades. Fuzzy logic has an advantage 

over conventional mathematical frameworks with 

its continuum-based approach, spanning from 0 to 

1 [34]. This characteristic makes it easier to 

understand and model complex nonlinear systems, 

where precise mathematical descriptions are often 

challenging to obtain. 

Fuzzy logic systems comprise membership 

functions and rules. Membership functions 

establish mappings between input variables and 

linguistic terms, while rules govern their 

interactions. Typically, domain experts formulate 
these rules based on their insights into the system 

under scrutiny, which can be seen as a limitation of 

fuzzy logic. 

In response to this limitation, researchers have 

combined ANNs with fuzzy logic, leading to the 

development of ANFIS [12]. These systems 

combine various types of ANNs, with the Tagaki-

Sugeno logic system as their foundation [35]. By 

incorporating fuzzy logic to handle uncertain and 

imprecise data, along with the neural network's 

ability to learn and adjust parameters using 
available system data, ANFIS provides a strong 

framework for addressing complex modeling 

challenges. 

In the ANFIS, membership function parameters 

undergo determination and optimization utilizing 

existing system data. Typically, a hybrid learning 

algorithm is employed to ascertain the parameters 

of the Sugeno-type fuzzy logic system. This 

algorithm combines gradient descent with the least 

square error method to calculate membership 

function parameters. This reduces experts' need for 

manual intervention to establish interval values for 
membership functions [36]. 

Nevertheless, a potential drawback of this 

approach arises when the system's input 
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parameters increase, resulting in a significant rise 

in learning time. This scalability limitation 

requires careful consideration when deploying 

neuro-fuzzy systems to handle extensive and 

complex datasets [37]. 

 

3.RESULTS AND DISCUSSION 

Acquiring empirical data is crucial to enhancing 

the development of ANN and ANFIS frameworks. 

These datasets, sourced from scholarly references, 
comprise molar component profiles observed 

across four discrete thermal conditions, 

specifically at 20 °C, 30 °C, 40 °C, and 55 °C [38-

41]. A total of 45 data points were used, with ten 

randomly selected for model testing and the rest for 

model training. To refine the model, predicting the 

molar composition in phase 2 (water-rich phase) 

requires temperature readings and molar 

component data from phase 1 (hydrocarbon-rich 

phase). The models have three input parameters: 

water and benzene molar compositions in phase 1 
(x3′ and x2′, respectively) and system temperature. 

The resulting output provides the predicted molar 

compositions of water and benzene in phase 2 (x3″ 

and x2″, respectively). 

Triangular membership functions (TRIMF) were 

deployed to construct the ANFIS, wherein each 

input encompasses four distinct membership 

functions, each governed by three variable 

parameters. A hybrid optimization approach was 

used to fine-tune the membership function 

parameters. Notably, ANFIS yields a single output; 

hence, two separate systems were instantiated—
one for benzene molar output and the other for 

water molar output, although they share identical 

inputs. 

Transitioning to the MLP-ANN model, akin input 

data utilized in ANFIS was adopted, with the 

output directly representing the mole fraction of 

benzene and water within phase 2. It’s crucial to 

note that the number of neurons within the hidden 

layer significantly impacts output error is crucial. 

After iterative refinement and experiential insights, 

a neural network configuration comprising ten 
neurons was chosen for hidden layer MLP-ANN 

and considered. Also, the log-sigmoid transfer 

function (logsig) was used for the hidden layer and 

the linear transfer function (purelin) was used for 

the output layer. The Levenberg-Marquardt 

algorithm facilitated training, with iterative 

learning cycles persisting until the error 

approached its minimum threshold, ensuring a 

precise estimation of molar component 

compositions across both methodologies. 

As mentioned before, using the NRTL equation 

involves obtaining the necessary parameters to 
estimate activity coefficients and molar component 

compositions in phase 2. The initial step is to 

determine parameters by using experimental data 

at specific temperatures and optimizing them 

through an optimization method. In this case, the 

PSO algorithm minimizes the objective function 

defined in Equation 4. The algorithm utilized 

50,000 particles over 100 iterations to ensure the 

error reached its optimal value, especially 

considering the challenge of working with a 

limited dataset and numerous parameters. Each 

particle in the algorithm represents NRTL equation 

parameters, and optimal constants were chosen to 
minimize risk within the search space. The search 

ranges were intentionally selected to allow 

unconstrained optimization while keeping the αij 

coefficients within 0 to 1 to maintain physical 

validity [42]. 

Figures 2, 3, 4, and 5 illustrate the output outcomes 

of an ANN and an ANFIS across various 

temperature settings. To compare these outcomes 

with those produced by the NRTL method, data 

obtained from the NRTL's adjustable coefficients 

through the PSO optimization method, as outlined 
in Table 1, are presented alongside the ANN and 

ANFIS results for comparative analysis. 

The NRTL method faces several challenges, 

particularly in solving sets of nonlinear equations 

to determine molar components across different 

phases after adjusting adjustable parameters. The 

NRTL equation system in this problem was solved 

using the fsolve function in MATLAB. 

Additionally, Newton's method was employed for 

further investigation. Interestingly, the results 

obtained from both methods were identical with no 

differences. It's worth noting that initial guess 
values for both methods were chosen to be close to 

the experimental values to ensure convergence to 

the desired values. This method also requires a 

large amount of data to fine-tune the adjustable 

parameters and adjust parameters to accommodate 

varying activities at different temperatures. In 

contrast, the ANN and ANFIS methodologies 

avoid these complexities by effectively modeling 

systems through data assimilation independently 

of system complexity. Unlike the NRTL equation, 

which may fail to cover certain system conditions, 
machine learning methods are explicitly used for 

scenarios where equations are insufficient to model 

systems comprehensively. 

The NRTL method requires solving nonlinear 

equations, unlike the ANN and ANFIS 

methodologies. The ANN and ANFIS methods use 

algebraic equations and straightforward operations 

to present results directly, making it easier to 

compare with laboratory data. Table 2 contains R-

squared, RME, and RMSD values for all three 

methods. Despite these evaluations, NRTL is not 

as effective as alternative methods in predicting the 
behavior of complex systems, such as the water-

EtOH-benzene three-component system 
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Fig. 2.  Phase diagrams for the ternary system EtOH-benzene-water at 20 °C using a) ANFIS, b) MLP-ANN, c) NRTL 
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Fig. 3.  Phase diagrams for the ternary system EtOH-benzene-water at 30 °C using a) ANFIS, b) MLP-ANN, c) NRTL 
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Fig. 4.  Phase diagrams for the ternary system EtOH-benzene-water at 40 °C using a) ANFIS, b) MLP-ANN, c) NRTL 
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Fig. 5.  Phase diagrams for the ternary system EtOH-benzene-water at 55 °C using a) ANFIS, b) MLP-ANN, c) NRTL 
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Table 1. Optimized parameters of the NRTL model for ternary LLE EtOH-benzene-water systems 

System i-j αij Aij Aji Bij Bji 

EtOH (1) 1-2 0.200001 0.367489 0.62030 -2.560444 -0.379293 

Benzene (2) 1-3 0.200003 0.178274 -37.50 -26.893267 400.00 

Water (3) 2-3 0.200000 0.766352 1.696453 332.196148 155.550857 

 
Table 2.  R-squared, RME, and RMSD for NRTL, MLP-ANN, and ANFIS Models. 

Method Error Test Data (10) Train Data (35) All Data (45) 

NRTL 

Rsquare 0.98848 0.99119 0.99076 

MRE 0.05386 0.09277 0.08413 

RMSD 0.02428 0.02568 0.02537 

MLP-ANN 

Rsquare 0.99953 0.99987 0.99982 

MRE 0.02391 0.05784 0.0503 

RMSD 0.00489 0.00303 0.00353 

ANFIS 

Rsquare 0.99992 0.99996 0.99995 

MRE 0.01802 0.01499 0.01566 

RMSD 0.00203 0.00162 0.00173 

 
Table 3. Experimental and calculated plait points data for the ternary system EtOH-benzene-water at various mperatures. 

Method Temperature Plait Point (x1) Plait Point (x2) Plait Point (x3) 

Experimental 

20 °C 0.3912 0.3600 0.2488 

30 °C 0.3650 0.3530 0.2820 

40 °C 0.3440 0.3300 0.3260 

55 °C 0.3540 0.2710 0.3750 

NRTL 

20 °C 0.3912 0.3600 0.2488 

30 °C 0.3650 0.3530 0.2820 

40 °C 0.3440 0.3300 0.3260 

55 °C 0.3540 0.2710 0.3750 

MLP-ANN 

20 °C 0.3880 0.3601 0.2519 

30 °C 0.3660 0.3553 0.2787 

40 °C 0.3429 0.3291 0.3280 

55 °C 0.3543 0.2690 0.3767 

ANFIS 

20 °C 0.3913 0.3601 0.2486 

30 °C 0.3650 0.3530 0.2820 

40 °C 0.3440 0.3300 0.3260 

55 °C 0.3540 0.2709 0.3751 

 

Based on Figures 2-5, the NRTL equation shows 

minimal error for one of the components, likely 

due to the mixture behaving similarly to a pure 

fluid, which the equation can predict accurately. 

However, most of its deviations are noticeable, as 

shown in Figure 2C. On the other hand, the ANFIS 

and MLP-ANN methods show predictive solid 

capabilities for the system, regardless of the 
specific temperatures or types of molar 

components. According to Table 2, the error 

metrics for ANFIS across test, training, and 

combined datasets are consistent, indicating its 

stable performance across various error 

measurement methods. There are discrepancies in 

performance between learning and test errors with 

other methods, indicating less robust performance. 

The MRE values for NRTL, MLP-ANN, and 

ANFIS methods, computed over 35 data points, are 
0.09277, 0.05784, and 0.01499, respectively. The 

corresponding MRE values for 10 test data points 
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are 0.05386, 0.02391, and 0.00203. This stark 

contrast highlights the effectiveness of ANFIS as 

an estimator. Using various error metrics allow for 

better identification of differences; for instance, 

the R-squared error provides insights not easily 

captured by other measures. 

According to Table 2, the MRE for the NRTL 

equation is about five times higher than that for 

ANFIS, indicating a significant difference. The 

MLP-ANN and ANFIS methods are considered 
more user-friendly, although they are not without 

challenges. For example, unlike the NRTL 

equation, MLP-ANN or ANFIS require training to 

estimate the mole fraction of components for each 

phase, making them less adaptable as standalone 

comprehensive systems. 
 

4.CONCLUSION 
The distillation of EtOH is challenging due to 

azeotropes. Benzene is often used as a third 

component to resolve this issue. This paper utilized 
a conventional thermodynamic system modeling 

approach using the NRTL equation. The 

parameters of this equation are experimentally 

obtained at different temperatures, resulting in 15 

adjustable parameters. The PSO algorithm 

minimizes an objective function derived from the 

NRTL equation and experimental data. To enhance 

the performance of the PSO, the number of 

particles has been increased to 50,000, with 100 

iterations. Additionally, MLP-ANN methods are 

employed, which require experimental data similar 
to the NRTL equation for learning. The input 

parameters for MLP-ANN and ANFIS models 

include temperature and molar components in one 

phase, with the output indicating the molar 

components in the other phase. The NRTL 

parameters was determined using 35 data point, 

and 10 data points are selected for testing. Also, to 

solve the non-linear equations of the NRTL 

equation, Newton's method and the fsolve ready 

command of MATLAB were used, which yielded 

the same results, although the initial guess was 

very effective, and for convergence, we tried to 
consider the same points close to the experimental 

data. ANFIS and MLP-ANN learning are also 

performed following the same procedure. The 

MRE error of 45 data for NRTL, ANFIS, and 

MLP-ANN is 0.08413, 0.01566, and 0.0503, 

respectively, demonstrating that the ANFIS 

method has outperformed both previous methods. 

Unlike the NRTL equation, MLP-ANN, ANFIS, 

and related methods bypass limitations associated 

with media polarity and nonlinear rate device 

calculations, providing efficient determination of 
molar components through simple algebraic 

operations. These results highlight the 

effectiveness of machine learning methods in 

modeling multicomponent thermodynamic 

systems, which is superior to traditional 

approaches such as the NRTL equation. 
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 چکیده

مطالعه بر روی استفاده از سازی قابل توجه در حال ظهور است. این عنوان یک روش خالصمایع به-سازی اتانول یک تحقیق محوری است که استخراج مایعخالص
سازی کند. مدلجزئی شامل اتانول، آب و بنزن بررسی میهای سه( را در سیستمLLEمایع )-سازی اتانول تمرکز دارد و تعادل مایعحلال بنزن برای خالص

بینی کسر مولی این مقاله، معادلات مورد استفاده برای پیشگراد انجام شد. در درجه سانتی 55و  40، 30، 20آب در دماهای -بنزن-های اتانولترمودینامیکی سیستم
(. MLP-ANN( و شبکه عصبی مصنوعی پرسپترون چند لایه )ANFIS)فازی -(، سیستم استنتاج تطبیقی عصبیNRTLعبارتند از: دو مایع غیر تصادفی )

 MLP-ANNهای های تجربی برای آموزش روش( بهینه شدند. دادهPSOام ذرات )سازی ازدحبا استفاده از الگوریتم بهینه NRTLالبته ابتدا پارامترهای معادله 
ها اجزای مولی  را در هر دو فاز تخمین زدند. با این حال، ها مورد استفاده قرار گرفت. این مدلهای تجربی یکسان برای همه مدل، با مجموعه دادهANFISو 

عملکرد بهتری دارند. خطاهای ریشه میانگین مربعات  NRTLنسبت به مدل  ANFISو  MLP-ANNهای ای نشان داد که روشتجزیه و تحلیل مقایسه
دهد که با بود. نتایج نشان می 0017/0و  0035/0، 0253/0ترتیب به ANFISو  NRTL ،MLP-ANNهای آمده برای مدل( به دستRMSDانحراف )

 بینی کسر مولی را دارد.کمترین خطای پیش ANFISطا و روش بیشترین خ NRTLبینی هر سه روش، معادله وجود خطای کم پیش
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