[1]L. Xiao, H. Shan, and Y. Wu, Chitosan cross-linked and grafted with epichlorohydrin and 2,4-dichlorobenzaldehyde as an efficient adsorbent for removal of Pb(II) ions from aqueous solution, Int. J. Biol. Macromol. 247 (2023) 125503.
[2]M. Kaur, P. Sharma, and S. Kumari, Response surface methodology approach for optimization of Cu2+ and Pb2+ removal using nanoadsorbent developed from rice husk, Mater. Today Commun. 21 (2019) 1–10.
[3]S. Haider, F.A.A. Ali, A. Haider, W.A. Al-Masry, and Y. Al-Zeghayer, Novel route for amine grafting to chitosan electrospun nanofibers membrane for the removal of copper and lead ions from aqueous medium, Carbohydr. Polym. 199 (2018) 406–414.
[4]Y. Zhang, M. Zhao, Q. Cheng, C. Wang, H. Li, X. Han, Z. Fan, G. Su, D. Pan, and Z. Li, Research progress of adsorption and removal of heavy metals by chitosan and its derivatives, a review, Chemosphere 279 (2021) 130927.
[5] S. Begum, N.Y. Yuhana, N. Md Saleh, and N.H. Nazirah Kamarudin, A.B. Sulong, Review of chitosan composite as a heavy metal adsorbent: material preparation and properties, Carbohydr. Polym. 259 (2021) 117613.
[6] P. Abhari, S. Abdi, and M. Nasiri, Effect of various types of anions and anionic surfactants on the performance of micellar enhanced ultrafiltration process in the removal of Pb(II) ions: An optimization with the response surface methodology, Chem. Eng. Res. Des. 187 (2022) 332–346.
[7] D, D, Giri, A. Alhazmi, A. Mohammad, S. Haque, N. Srivastava, V.K. Thakur, V.K. Gupta, and D.B. Pal, Lead removal from synthetic wastewater by biosorbents prepared from seeds of Artocarpus heterophyllus and Syzygium cumini, Chemosphere 287 (2020) 132016.
[8] A. Dabrowski, Z. Hubicki, P. Podkos´cielny, and E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere 56 (2004) 91–106.
[9] A. Bodagh, H. Khoshdast, H. Sharafi, H. Shahbani Zahiri, and K. Akbari Noghabi, Removal of cadmium (II) from aqueous solution by ion flotation using rhamnolipid biosurfactant as an ion collector, Ind. Eng. Chem. Res. 52 (2013) 3910–3917.
[10]G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Graphene oxide and its application as an adsorbent for wastewater treatment, J. Chem. Technol. Biotechnol. 89 (2014) 196–205.
[11]M.M. Matlock, B.S. Howerton, D.A. Atwood, Chemical precipitation of lead from lead battery recycling plant wastewater, Ind. Eng. Chem. Res. 41 (2002) 1579–1582.
[12]O. Agboola, T. Mokrani, R. Sadiku, Porous and fractal analysis on the permeability of nanofiltration membranes for the removal of metal ions, J. Mater. Sci. 51 (2016) 2499–2511.
[13]F.M. Pang, P. Kumar, T.T. Teng, A.K. Mohd Omar, K.L. Wasewar, Removal of lead, zinc and iron by coagulation-flocculation, J. Taiwan Inst. Chem. Eng. 42 (2011) 809–815.
[14]Y.X. Liu, J.M. Yan, D.X. Yuan, Q.L. Li, X.Y. Wu, The study of lead removal from aqueous solution using an electrochemical method with a stainless steel net electrode coated with single wall carbon nanotubes, Chem. Eng. J. 218 (2013) 81–88.
[15]Y. Jia, Y. Zou, X. Zou, Y. Jiang, S. Song, J. Qin, Y. Wang, L. Zhu, Study on the adsorption performance of multi-base composite magnesia cementitious material microfiltration membrane for different heavy metal ions, Mater. Lett. 335 (2023) 133488.
[16] X. Zeng, G. Zhang, J. Zhu, and Z. Wu, Adsorption of heavy metal ions in water by surface functionalized magnetic composites: a review, Environ. Sci. Water Res. Technol. 8 (2022) 907–925.
[17]S.M. Waly, A.M. El-Wakil, and W.M. Abou El-Maaty, F.S. Awad, Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon, J. Saudi Chem. Soc. 25 (2021) 101296.
[18]S. Z. Mohammadi, H. Hamidian, and Z. Moeinadini, High surface area-activated carbon from Glycyrrhiza glabra residue by ZnCl2 activation for removal of Pb(II) and Ni(II) from water samples, J. Ind. Eng. Chem. 20 (2014) 4112–4118.
[19]S. Z. Mohammadi, M.A. Karimi, S.N. Yazdy, T. Shamspur, and H. Hamidian, Removal of Pb(II) ions and malachite green dye from wastewater by activated carbon produced from lemon peel, Quim. Nova 37 (2014) 804-809.
[20]P. Goyal, C. Shekhar Tiwary, and S. K. Misra, Ion exchange based approach for rapid and selective Pb(II) removal using iron oxide decorated metal organic framework hybrid, J. Environ. Manag. 277 (2021) 111469.
[21]Y. Chen, J. Tang, S. Wang, L. Zhang, Ninhydrin-functionalized chitosan for selective removal of Pb(II) ions: Characterization and adsorption performance, Int. J. Biol. Macromol. 177 (2021) 29–39.
[22]H. Ahmadi, S.S. Hafiz, H. Sharifi, N. Ngambua Rene, S. Sanaullah Habibi, and S. Hussain, Low cost biosorbent (Melon Peel) for effective removal of Cu (II), Cd (II), and Pb (II) ions from aqueous solution, Case Stud. Chem. Environ. Eng. 6 (2022) 100242.
[23]R.V. Hemavathy, A. Saravanan, P. Senthil Kumar, D.-V.N. Vo, S. Karishma, and S. Jeevanantham, Adsorptive removal of Pb(II) ions onto surface modified adsorbents derived from Cassia fistula seeds: Optimization and modelling study, Chemosphere 283 (2021) 131276.
[24]S.Z. Mohammadi, Z. Safari, and N. Madady, A novel Co3O4@SiO2 magnetic nanoparticle-nylon 6 for high efficient elimination of Pb(II) ions from wastewater, Appl. Surf. Sci. 514 (2020) 145873.
[25]Z. Jafari, V.M. Avargani, and M.R. Rahimi, Magnetic nanoparticles-embedded nitrogen-doped carbon nanotube/porous carbon hybrid derived from a metal-organic framework as a highly efficient adsorbent for selective removal of Pb(II) ions from aqueous solution, J. Mol. Liq. 318 (2020) 113987.
[26]R. Sitko, M. Musielak, M. Serda, E. Talik, A. Gagor, B. Zawisza, and M. Malecka, Graphene oxide decorated with fullerenol nanoparticles for highly efficient removal of Pb(II) ions and ultrasensitive detection by total-reflection X-ray fluorescence spectrometry, Sep. Pur. Technol. 277 (2021) 119450.
[27]M.D. Yahya, I.B. Muhammed, K.S. Obayomi, A.G. Olugbenga, and U.B. Abdullahi, Optimization of fixed bed column process for removal of Fe(II) and Pb(II) ions from thermal power plant effluent using NaoH-rice husk ash and Spirogyra, Sci. Afr. 10 (2020) e00649.
[28]R. Kasirajan, A. Bekele, E. Girma, Adsorption of lead (Pb-II) using CaO-NPs synthesized by sol gel process from hen eggshell: Response surface methodology for modeling, optimization and kinetic studies, S. Afr. J. Chem. Eng. 40 (2022) 209–229.
[29]J. Bayuoa, M. Rwiza, M. Abdullai Abukari, K.B. Pelig-Ba, and K. Mtei, Modeling and optimization of independent factors influencing lead(II) biosorption from aqueous systems: A statistical approach, Sci. Afr. 16 (2022) e01270.
[30]S.Z. Mohammadi, N. Mofidinasab, and M.A. Karimi, F. Mosazadeh, Fast and efficient removal of Pb(II) ion and malachite green dye from wastewater by using magnetic activated carbon–cobalt nanoparticles, Water Sci. Technol. 82 (2020) 829-842.
[31]M. Konni, S. Doddi, A.S. Dadhich, and S. Babu Mukkamala, Adsorption of CO2 by hierarchical structures of f-MWCNTs@Zn/Co-ZIF and N-MWCNTs@Zn/Co-ZIF prepared through in situ growth of ZIFs in CNTs, Surf. Interfaces 12 (2018) 20-25.
[32]K. Chhetri, A. Adhikari, J. Kunwar, D. Acharya, R. Mangal Bhattarai, Y.S. Mok, A. Adhikari, A. Prasad Yadav, and H. Yong Kim, Recent Research Trends on Zeolitic Imidazolate Framework-8 and Zeolitic Imidazolate Framework-67-Based Hybrid Nanocomposites for Supercapacitor Application, Int. J. Energy Res. 2023 (2023) 8885207.
[33]M. Shahsavari, I. Sheikhshoaie, and H. Beitollahi, Electrochemical sensor based on Fe3O4/ZIF-4 nanoparticles for determination of bisphenol A, J. Food Meas. Charact. 17 (2023) 1109-1118.
[34]R. Ahmad, U. Ali Khan, N. Iqbal, and T. Noorb, Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview, RSC Adv. 10 (2020) 43733.
[35]C. Zhang, J. Ren, Y. Xing, M. Cui, N. Li, P. Liu, X. Wen, and M. Li, Fabrication of hollow ZnO-Co3O4 nanocomposite derived from bimetallicorganic frameworks capped with Pd nanoparticles and MWCNTs for highly sensitive detection of tanshinol drug, Mater. Sci. Eng. C 108 (2020) 110214.
[36]Q. Luo, X. Huang, Q. Deng, X. Zhao, H. Liao, H. Deng, and J. Jiang, Novel 3D cross-shaped Zn/Co bimetallic zeolite imidazolate frameworks for simultaneous removal Cr (VI) and Congo Red. Environ, Sci. Poll. Res. 29 (2022) 40041-40052.
[37]K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, and F. Verpoort, Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67, J. Mater. Chem. A. 5 (2017) 952-957.
[38]R. Istratie, R. Băbuţă, A. Popa, C. Păcurariu, and M. Stoia, Enhanced Adsorption of p-Nitrophenol from Aqueous Solutions Using a Functionalized Styrene-Divinylbenzene Copolymer, Water Air Soil Pollut. 228 (2017) 276.
[39]W.O. Afolabi, B.O. Opeolu, O.S. Fatoki, B.J. Ximba, and O.S. Olatunji, Vitis vinifera leaf litter for biosorptive removal of nitrophenols, Int. J. Environ. Sci. Technol. 15 (2018) 1669–1678.
[40] P.-T. Huong, B.-K. Lee, J. Kim, and C.-H. Lee, Nitrophenols removal from aqueous medium using Fe-nano mesoporous zeolite, Mater. Design 101 (2016) 210–217.
[41]J. Chen, X. Sun, L. Lin, X. Dong, and Y. He, Adsorption removal of o-nitrophenol and p-nitrophenol from wastewater by metal organic framework Cr-BDC, Chin. J. Chem. Eng. 225 (2017) 775–781.
[42]G. Yuvaraja, Y. Pang, D.Y. Chen, L.J. Kong, S. Mehmood, M.V. Subbaiah, D.S. Rao, C.M. Pavuluri, J.C. Wen, and G.M. Reddy, Modification of chitosan macromolecule and its mechanism for the removal of Pb(II) ions from aqueous environment, Int. J. Biol. Macromol. 136 (2019) 177–188.
[43]Y. Yan, G. Yuvaraja, C. Liu, L. Kong, K. Guo, G.M. Reddy, and G.V. Zyeyanov, Removal of Pb(II) ion from aqueous media using epichlorohydrin crosslinked chitosan Schiff’s base@Fe3O4 (ECCSB@Fe3O4), Int. J. Biol. Macromol. 117 (2018) 1305–1313.
[44]W.S.W. Ngah, and S. Fatinathan, Pb(II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange and mechanism studies, J. Environ. Sci. 22 (2010) 338–346.
[45] F. Alakhras, H. Al-Shahrani, E. Al-Abbad, F. Al-Rimawi, and N. Ouerfelli, Removal of Pb (II) metal ions from aqueous solution using chitosan-vanillin derivatives of chelating polymers, Pol. J. Environ. Stud. 28 (2019) 1523–1534.
[46]S.Z. Mohammadi, N. Mofidinasab, M.A. Karimi, and F. Mosazadeh, Fast and efficient removal of Pb(II) ion and malachite green dye from wastewater by using magnetic activated carbon–cobalt nanoparticles, Water Sci. Technol. 82 (2020) 829–842.
[47]A. dos Santos, M.F. Viante, D.J. Pochapski, A.J. Downs, and C.A.P. Almeida, Enhanced removal of p-nitrophenol from aqueous media by montmorillonite clay modified with a cationic surfactant, J. Hazard. Mater. 355 (2018) 136–144.
[48]Y. Tan, Z. Sun, H. Meng, Y. Han, J. Wu, J. Xu, Y. Xu, and X. Zhang, A new MOFs/polymer hybrid membrane: MIL-68(Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue, Sep. Pur. Technol. 215 (2019) 217–226.
[49]R.K. Gautam, P.K. Gautam, S. Banerjee, S. Soni, S.K. Singh, and M.C. Chattopadhyaya, Removal of Ni(II) by magnetic nanoparticles, J. Mol. Liq. 204 (2015) 60-69.