[1]W. Ngeontae, K. Chaiendoo, K. Ngamdee, S. Ruangchai, C. Saiyasombat, W. Busayaporn, S. Ittisanronnachai, and V. Promarak, A highly selective fluorescent sensor for manganese (II) ion detection based on N, S-doped carbon dots triggered by manganese oxide, Dye. Pigment. 203 (2022) 110325.
[2]J. Park, M. B. Cleary, D. Li, J. A. Mattocks, J. Xu, H. Wang, S. Mukhopadhyay, E. M. Gale, and J.A. Cotruvo Jr, Proc. Natl. Acad. Sci. 51 (2022) e2212723119.
[3]W. Zou, J. Li, and X.Gong, A facile synthetic strategy to simultaneously achieve ultra-wide PL redshift of carbon nanodots and their high selectivity and sensitivity for Mn2+ detection, Mater. Today Chem. 37 (2024) 102001.
[4]F. Mollaamin, and M. Monajjemi, Determination of GaN nanosensor for scavenging of toxic heavy metal ions (Mn2+, Zn2+, Ag+, Au3+, Al3+, Sn2+) from water: Application of green sustainable materials by molecular modeling approach, Comput. Theor. Chem. 1237 (2024) 114646.
[5]P. D. Singh, Z. V. Murthy, and S. K. Kailasa, Zinc nitride quantum dots as an efficient probe for simultaneous fluorescence detection of Cu2+ and Mn2+ ions in water samples, Microchim. Acta. 191(2024) 161.
[6]X. Dai, C. Song, S. Ma, F. Cao, and D. Dong, Rapid Determination of Cr3+ and Mn2+ in Water Using Laser-Induced Breakdown Spectroscopy Combined with Filter Paper Modified with Gold Nanoclusters, Biosens. 14 (2024) 267.
[7]S. Rayati, Y. D. Farahani, and J. B. Ghasemi, Surface decorated graphene oxide with porphyrin: A Promising On-off sensor for Mn2+ ions detection in aqueous media, J. Mol. Struct. (2024)138897.
[8]V. Raju, R. S. Kumar, Y. Tharakeswar, and S. A. Kumar, A multifunctional Schiff-base as chromogenic chemosensor for Mn2+ and fluorescent chemosensor for Zn2+ in semi-aqueous environment, Inorganica Chim. Acta. 493 (2019)49-56.
[9]Y. Yu, Y. Li, Q. Zhang, Y. Zha, S. Lu, Y. Yang, P. Li, and Y. Zhou, Colorimetric immunoassay via smartphone based on Mn2+-Mediated aggregation of AuNPs for convenient detection of fumonisin B1, Food Control. 132 (2022)108481.
[10]A. Dinu, and C. Apetrei, A review of sensors and biosensors modified with conducting polymers and molecularly imprinted polymers used in electrochemical detection of amino acids: Phenylalanine, tyrosine, and tryptophan, Int. J. Mol. Sci. 23 (2022) 1218.
[11]R. Kumar, G. B.V. S. Lakshmi, K. Singh, and P.R. Solanki, A novel approach towards optical detection and detoxification of Cr (VI) to Cr (III) using L-Cys-VS2QDs, J. Environ. Chem. Eng. 7 (2019) 103202.
[12]B. P. Jagilinki, S. Ilic, C. Trncik, A.M. Tyryshkin, D.H. Pike, W. Lubitz, E. Bill, O. Einsle, J. A. Birrell, B. Akabayov, D. Noy, and V. Nanda, In vivo biogenesis of a de novo designed iron–sulfur protein, ACS Synth. Biol. 9 (2020) 3400-7.
[13]J. A. Combs, and G. M. Denicola, The non-essential amino acid cysteine becomes essential for tumor proliferation and survival, Cancers 11 (2019) 678.
[14]D. Rohilla, S. Chaudhary, N. Kaur, and A. Shanavas, Dopamine functionalized CuO nanoparticles: A high valued “turn on” colorimetric biosensor for detecting cysteine in human serum and urine samples, Mater. Sci. Eng. C 110 (2020) 110724.
[15]F. Yan, X. Sun, F. Zu, Z. Bai, Y. Jiang, K. Fan, and J. Wang, Fluorescent probes for detecting cysteine. Methods and applications in fluorescence, Methods Appl. Fluoresc. 6 (2018) 042001.
[16]N. Cao, H. Zhou, H. Tan, R. Qi, J. Chen, S. Zhang, and J. Xu, Turn-on fluorescence detection of cysteine with glutathione protected silver nanoclusters, Methods Appl. Fluoresc. 7 (2019) 034004.
[17]Z. Huang, C. Wu, Y. Li, Z. Zhou, R. Xie, X. Pang, H. Xu, H. Li, and Y. Zhang, A fluorescent probe for the specific detection of cysteine in human serum samples, Anal. Methods 11 (2019) 3280-5.
[18]H. Tavallali, G. Deilamy-Rad, M. A. Karimi, and E. Rahimy A novel dye-based colorimetric chemosensors for sequential detection of Cu2+ and cysteine in aqueous solution, Anal. Biochem. 583 (2019) 113376.
[19]G. Deilamy-Rad, K. Asghari, and H. Tavallali, Development of a reversible indicator displacement assay based on the 1-(2-Pyridylazo)-2-naphthol for colorimetric determination of cysteine in biological samples and its application to constructing the paper test strips and a molecular-scale set/reset memorized device, Appl. Biochem. Biotechnol. 192 (2020) 85-102.
[20]H. Tavallali, G. Deilamy-Rad, and N. Mosallanejad, Reactive blue 4 as a Single colorimetric chemosensor for sequential determination of multiple analytes with different optical responses in aqueous media: Cu2+-cysteine using a metal ion displacement and Cu2+-arginine through the host-guest interactionAppl, Biochem. Biotechnol. 187 (2019) 913-37.
[21]T. K. Stewart, I. E. Carotti, Y. M. Qureshi, and J. A. Covington, Trends in chemical sensors for non-invasive breath analysis, TrAC, Trends Anal. Chem. 25 (2024) 117792.
[22]H. Tavallali, G. Deilamy-Rad, A. Parhami, K. Asghari, and A. Ahmadi, Bismuth triggered selective colorimetric naked-eye detection for oxalate ions based on bromopyrogallol red that works as a molecular keypad lock, J. Environ. Anal. Chem.101(2021) 648-67.
[23]H. Tavallali, S. Fakhraee, M. Dashti Darvishzadeh, M.A. Karimi, and E. Rahimi, Colorimetric detection of clotrimazole environmental pollutant using a newly developed chemosensor; an experimental and theoretical study, J. Environ. Anal. Chem. (2024) 1-19.
[24]H. Tavallali, G. Deilamy-Rad, A. Parhami, and E. Abbasiyan, A novel and efficient colorimetric chemosensor for detection and determination of biologically important ions in DMSO/H2O media using bromo pyrogallol red chemosensors with analytical applications, J. Photochem. Photobiol. B. 115 (2012)51-7.
[25]H. Tavallali, G. Deilamy-Rad, A. Parhami, and E. Abbasiyan, Colorimetric detection of copper and chloride in DMSO/H2O media using bromopyrogallol red as a chemosensor with analytical applications, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 97 (2012) 60-5.
[26]B. Das, and P. Gupta, Multimetallic transition metal complexes: Luminescent probes for biomolecule sensing, ion detection, imaging and therapeutic application, Coord. Chem. Rev. 504 (2024) 215656.
[27]H. Tavallali, G. Deilamy-Rad, A. Parhami, and N. Hasanli, An efficient and ultrasensitive rhodamine B-based reversible colorimetric chemosensor for naked-eye recognition of molybdenum and citrate ions in aqueous solution: Sensing behavior and logic operation, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 139 (2015) 253–61.
[28]H. Tavallali, M. R. Baezzat, G. Deilamy-Rad, A. Parhami, and N. Hasanli, An ultrasensitive and highlyselective fluorescent and colorimetric chemosensor forcitrateions based on rhodamine B and its application as the first molecular security keypad lock basedon phosphomolybdic acid and citrate inputs, J. Lumin. 60 (2015) 328–36.
[29]R. K. Boggess, J. R. Absher, S. Morelen, L.T. Taylor, and J. W. Hughes, Interaction of manganese (II) and amino acids with emphasis on cysteine and penicillamine (beta., beta.-dimethylcysteine), Inorg. Chem. 22 (1983) 1273-9.
[30]H. Tavallali, G. Deilamy-Rad, A. Parhami, and S. Kiyani, Dithizone as novel and efficient chromogenic probe for cyanide detection in aqueous media through nucleophilic addition into diazenylthione moiety, Spectrochim. Acta A Mol. Biomol. Spectrosc. 121 (2014) 139-46.
[31]W. Chen, Y. Zhao, T. Seefeldt, and X. Guan, Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid, J. Pharm. Biomed. Anal. 48 (2008) 1375–80.
[32]H. A. Benesi, and J. H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703-07.
[33]Y. Fukushima, and S. Aikawa, Colorimetric detection of Mn (II) based on a mixture of an anionic pyridylazo dye and a cationic polyelectrolyte in aqueous solution, Color. Technol. 136 (2020) 450-6.
[34]Y. Wang, X. Wang, K. Zhang, X. Wang, X. Xin, W. Fan, F. Dai, Y. Han, and D. Sun, Solvent-induced terbium metal–organic frameworks for highly selective detection of manganese (II) ions, Dalton Trans. 48 (2019) 2569-73.
[35]L. Zhao, H. Li, H. Liu, M. Liu, N. Huang, Z. He, Y. Li, Y. Chen, and L. Ding, Microwave-assisted facile synthesis of polymer dots as a fluorescent probe for detection of cobalt (II) and manganese (II), Anal. Bioanal. chem. 411 (2019) 2373-81.
[36]N. Roy, A. Dutta, P. Mondal, P. C. Paul, and T.S. Singh, A new turn-on fluorescent chemosensor based on sensitive Schiff base for Mn2+ ion, J. Lumin. 165 (2015) 167-73.
[37]Y. J. Lee, C. Lim, H. Suh, E. J. Song, and C. Kim, A multifunctional sensor: chromogenic sensing for Mn2+ and fluorescent sensing for Zn2+ and Al3+, Sensor Actuat. B-Chem. 201 (2014) 535-44
[38]C. W. Ooi, U. Waldo, Y. Norazriena, , K. S. Lim, S. T. Tan, Z. Rozalina, and H. Ahmad, L-cysteine grafted fiber-optic chemosensor for heavy metal detection, Opt. Fiber Technol. 71 (2022) 102938.
[39]H. Khajehsharifi, and A. Sheini, A selective naked-eye detection and determination of cysteine using an indicator-displacement assay in urine sample, Sensor Actuat. B-Chem. 199 (2014) 457–62.
[40]S. A. Lee, J. J. Lee, J. W. Shin, K. S. Min, and C. Kim, A colorimetric chemosensor for the sequential detection of copper (II) and cysteine, Dyes Pigm. 116 (2015) 131–8.
[41]S. Xue, S. Ding, Q. Zhai, H. Zhang, and G. Feng, A readily available colorimetric and near-infrared fluorescent turn-on probe for rapid and selective detection of cysteine in living cells, Biosens. Bioelectron. 68 (2015) 316–21.
[42]X. Wei, L. Qi, J. Tan, R. Liu, and F. Wang, A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles, Anal. Chim. Acta 671 (2010) 80–4.
[43]K. Farhadi, M. Forough, A. Pourhossein, and R. Molaei, Highly sensitive and selective colorimetric probe for determination of l-cysteine in aqueous media based on Ag/Pd bimetallic nanoparticles, Sensor Actuat. B-Chem. 202 (2014) 993–1001.
[44]J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, Fifth Edition: W.H. Freeman, (2002).
[45]D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals of Analytical Chemistry, Cengage Learning, (2013).
[46]L. Feng, Z. Lyu, A. Offenhausser, and D. Mayer, Multi‐level logic gate operation based on amplified aptasensor performance, Angew. Chem. Int. Edit. 54 (2015) 7693–7.
[47]T. K. Kim, T test as a parametric statistic, Korean. J. Anesthsioal 68 (2015) 540-6.