In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

Department of Chemistry, Payame Noor University 19395-4697 Tehran, Islamic Republic of Iran

Abstract

A novel colorimetric chemosensor for naked-eye detection and determination of Mn2+ and cysteine (Cys) based on indicator displacement assay (IDA) was designed using bromo pyrogallol red (BPR). The indicator exchange occurred between BPR and Cys by the addition of Cys to the Mn(BPR) complex, which is accomplished by an immediate visible color change from purple to magenta, in EtOH/HEPES buffer 10.0 mmol L-1, pH 9.3 (1:4 v/v). The proposed method exhibits a 0.02 μmol L−1 detection limit and good linearity in the range of 0.11–2.87 μmol L−1 for cysteine amino acid. Additionally, the absorption and color change obtained in this chemosensor operate as an “IMPLICATION” logic gate considering Mn2+ and Cys as inputs. Eventually, based on such a fast, reversible, and reproducible signal, a molecular-scale sequential memory unit was designed to display “keypad lock” behavior. The developed chemosensor presented satisfactory repeatability, good precision, and successful application for the selective determination of Cys in human biological fluids. Furthermore, the method's accuracy was evaluated by comparing the results obtained from the proposed method and those from the reference method.

Keywords

 
[1]W. Ngeontae, K. Chaiendoo, K. Ngamdee, S. Ruangchai, C. Saiyasombat, W. Busayaporn, S. Ittisanronnachai, and V. Promarak, A highly selective fluorescent sensor for manganese (II) ion detection based on N, S-doped carbon dots triggered by manganese oxide, Dye. Pigment. 203 (2022) 110325.
[2]J. Park, M. B. Cleary, D. Li, J. A. Mattocks, J. Xu, H. Wang, S. Mukhopadhyay, E. M. Gale, and J.A. Cotruvo Jr, Proc. Natl. Acad. Sci. 51 (2022) e2212723119.
[3]W. Zou, J. Li, and X.Gong, A facile synthetic strategy to simultaneously achieve ultra-wide PL redshift of carbon nanodots and their high selectivity and sensitivity for Mn2+ detection, Mater. Today Chem. 37 (2024) 102001.
[4]F. Mollaamin, and M. Monajjemi, Determination of GaN nanosensor for scavenging of toxic heavy metal ions (Mn2+, Zn2+, Ag+, Au3+, Al3+, Sn2+) from water: Application of green sustainable materials by molecular modeling approach, Comput. Theor. Chem. 1237 (2024) 114646.
[5]P. D. Singh, Z. V. Murthy, and S. K. Kailasa, Zinc nitride quantum dots as an efficient probe for simultaneous fluorescence detection of Cu2+ and Mn2+ ions in water samples, Microchim. Acta. 191(2024) 161.
[6]X. Dai, C. Song, S. Ma, F. Cao, and D. Dong, Rapid Determination of Cr3+ and Mn2+ in Water Using Laser-Induced Breakdown Spectroscopy Combined with Filter Paper Modified with Gold Nanoclusters, Biosens. 14 (2024) 267.
[7]S. Rayati, Y. D. Farahani, and J. B. Ghasemi, Surface decorated graphene oxide with porphyrin: A Promising On-off sensor for Mn2+ ions detection in aqueous media, J. Mol. Struct. (2024)138897.
[8]V. Raju, R. S. Kumar, Y. Tharakeswar, and S. A. Kumar, A multifunctional Schiff-base as chromogenic chemosensor for Mn2+ and fluorescent chemosensor for Zn2+ in semi-aqueous environment, Inorganica Chim. Acta. 493 (2019)49-56.
[9]Y. Yu, Y. Li, Q. Zhang, Y. Zha, S. Lu, Y. Yang, P. Li, and Y. Zhou, Colorimetric immunoassay via smartphone based on Mn2+-Mediated aggregation of AuNPs for convenient detection of fumonisin B1, Food Control. 132 (2022)108481.
[10]A. Dinu, and C. Apetrei, A review of sensors and biosensors modified with conducting polymers and molecularly imprinted polymers used in electrochemical detection of amino acids: Phenylalanine, tyrosine, and tryptophan, Int. J. Mol. Sci. 23 (2022) 1218.
[11]R. Kumar, G. B.V. S. Lakshmi, K. Singh, and P.R. Solanki, A novel approach towards optical detection and detoxification of Cr (VI) to Cr (III) using L-Cys-VS2QDs, J. Environ. Chem. Eng. 7 (2019) 103202.
[12]B. P. Jagilinki, S. Ilic, C. Trncik, A.M. Tyryshkin, D.H. Pike, W. Lubitz, E. Bill, O. Einsle, J. A. Birrell, B. Akabayov, D. Noy, and V. Nanda, In vivo biogenesis of a de novo designed iron–sulfur protein, ACS Synth. Biol. 9 (2020) 3400-7.
[13]J. A. Combs, and G. M. Denicola, The non-essential amino acid cysteine becomes essential for tumor proliferation and survival, Cancers 11 (2019) 678.
[14]D. Rohilla, S. Chaudhary, N. Kaur, and A. Shanavas, Dopamine functionalized CuO nanoparticles: A high valued “turn on” colorimetric biosensor for detecting cysteine in human serum and urine samples, Mater. Sci. Eng. C 110 (2020) 110724.
[15]F. Yan, X. Sun, F. Zu, Z. Bai, Y. Jiang, K. Fan, and J. Wang, Fluorescent probes for detecting cysteine. Methods and applications in fluorescence, Methods Appl. Fluoresc. 6 (2018) 042001.
[16]N. Cao, H. Zhou, H. Tan, R. Qi, J. Chen, S. Zhang, and J. Xu, Turn-on fluorescence detection of cysteine with glutathione protected silver nanoclusters, Methods Appl. Fluoresc. 7 (2019) 034004.
[17]Z. Huang, C. Wu, Y. Li, Z. Zhou, R. Xie, X. Pang, H. Xu, H. Li,  and Y. Zhang, A fluorescent probe for the specific detection of cysteine in human serum samples, Anal. Methods 11 (2019) 3280-5.
[18]H. Tavallali, G. Deilamy-Rad, M. A. Karimi, and E. Rahimy A novel dye-based colorimetric chemosensors for sequential detection of Cu2+ and cysteine in aqueous solution, Anal. Biochem. 583 (2019) 113376.
[19]G. Deilamy-Rad, K. Asghari, and H. Tavallali, Development of a reversible indicator displacement assay based on the 1-(2-Pyridylazo)-2-naphthol for colorimetric determination of cysteine in biological samples and its application to constructing the paper test strips and a molecular-scale set/reset memorized device, Appl. Biochem. Biotechnol. 192 (2020) 85-102.
[20]H. Tavallali, G. Deilamy-Rad, and N. Mosallanejad, Reactive blue 4 as a Single colorimetric chemosensor for sequential determination of multiple analytes with different optical responses in aqueous media: Cu2+-cysteine using a metal ion displacement and Cu2+-arginine through the host-guest interactionAppl, Biochem. Biotechnol.  187 (2019) 913-37.
[21]T. K. Stewart, I. E. Carotti, Y. M. Qureshi, and J. A. Covington, Trends in chemical sensors for non-invasive breath analysis, TrAC, Trends Anal. Chem. 25 (2024) 117792.
[22]H. Tavallali, G. Deilamy-Rad, A. Parhami, K. Asghari, and A. Ahmadi, Bismuth triggered selective colorimetric naked-eye detection for oxalate ions based on bromopyrogallol red that works as a molecular keypad lock, J. Environ. Anal. Chem.101(2021) 648-67.
[23]H. Tavallali, S. Fakhraee, M. Dashti Darvishzadeh, M.A. Karimi, and E. Rahimi, Colorimetric detection of clotrimazole environmental pollutant using a newly developed chemosensor; an experimental and theoretical study, J. Environ. Anal. Chem. (2024) 1-19.
[24]H. Tavallali, G. Deilamy-Rad, A. Parhami, and E. Abbasiyan, A novel and efficient colorimetric chemosensor for detection and determination of biologically important ions in DMSO/H2O media using bromo pyrogallol red chemosensors with analytical applications, J. Photochem. Photobiol. B. 115 (2012)51-7.
[25]H. Tavallali, G. Deilamy-Rad, A. Parhami, and E. Abbasiyan, Colorimetric detection of copper and chloride in DMSO/H2O media using bromopyrogallol red as a chemosensor with analytical applications, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 97 (2012) 60-5.
[26]B. Das, and P. Gupta, Multimetallic transition metal complexes: Luminescent probes for biomolecule sensing, ion detection, imaging and therapeutic application, Coord. Chem. Rev. 504 (2024) 215656.
[27]H. Tavallali, G. Deilamy-Rad, A. Parhami, and N. Hasanli, An efficient and ultrasensitive rhodamine B-based reversible colorimetric chemosensor for naked-eye recognition of molybdenum and citrate ions in aqueous solution: Sensing behavior and logic operation, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 139 (2015) 253–61.
[28]H. Tavallali, M. R. Baezzat, G. Deilamy-Rad, A. Parhami, and N. Hasanli, An ultrasensitive and highlyselective fluorescent and colorimetric chemosensor forcitrateions based on rhodamine B and its application as the first molecular security keypad lock basedon phosphomolybdic acid and citrate inputs, J. Lumin. 60 (2015) 328–36.
[29]R. K. Boggess, J. R. Absher, S. Morelen, L.T. Taylor, and J. W. Hughes, Interaction of manganese (II) and amino acids with emphasis on cysteine and penicillamine (beta., beta.-dimethylcysteine), Inorg. Chem. 22 (1983) 1273-9.
[30]H. Tavallali, G. Deilamy-Rad, A. Parhami, and S. Kiyani, Dithizone as novel and efficient chromogenic probe for cyanide detection in aqueous media through nucleophilic addition into diazenylthione moiety, Spectrochim. Acta A Mol. Biomol. Spectrosc. 121 (2014) 139-46.
[31]W. Chen, Y. Zhao, T. Seefeldt, and X. Guan, Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid, J. Pharm. Biomed. Anal. 48 (2008) 1375–80.
[32]H. A. Benesi, and J. H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703-07. 
[33]Y. Fukushima, and S. Aikawa, Colorimetric detection of Mn (II) based on a mixture of an anionic pyridylazo dye and a cationic polyelectrolyte in aqueous solution, Color. Technol. 136 (2020) 450-6.
[34]Y. Wang, X. Wang, K. Zhang, X. Wang, X. Xin, W. Fan, F. Dai, Y. Han, and D. Sun, Solvent-induced terbium metal–organic frameworks for highly selective detection of manganese (II) ions, Dalton Trans. 48 (2019) 2569-73.
[35]L. Zhao, H. Li, H. Liu, M. Liu, N. Huang, Z. He, Y. Li, Y. Chen, and L. Ding, Microwave-assisted facile synthesis of polymer dots as a fluorescent probe for detection of cobalt (II) and manganese (II), Anal. Bioanal. chem. 411 (2019) 2373-81.
[36]N. Roy, A. Dutta, P. Mondal, P. C. Paul, and T.S. Singh, A new turn-on fluorescent chemosensor based on sensitive Schiff base for Mn2+ ion, J. Lumin. 165 (2015) 167-73.
[37]Y. J. Lee, C. Lim, H. Suh, E. J. Song, and C. Kim, A multifunctional sensor: chromogenic sensing for Mn2+ and fluorescent sensing for Zn2+ and Al3+, Sensor Actuat. B-Chem. 201 (2014) 535-44
[38]C. W. Ooi, U. Waldo, Y. Norazriena, , K. S. Lim, S. T. Tan, Z. Rozalina, and H. Ahmad, L-cysteine grafted fiber-optic chemosensor for heavy metal detection, Opt. Fiber Technol. 71 (2022) 102938.
[39]H. Khajehsharifi, and A. Sheini, A selective naked-eye detection and determination of cysteine using an indicator-displacement assay in urine sample, Sensor Actuat. B-Chem. 199 (2014) 457–62.
[40]S. A. Lee, J. J. Lee, J. W. Shin, K. S. Min, and C. Kim, A colorimetric chemosensor for the sequential detection of copper (II) and cysteine, Dyes Pigm. 116 (2015) 131–8.
[41]S. Xue, S. Ding, Q. Zhai, H. Zhang, and G. Feng, A readily available colorimetric and near-infrared fluorescent turn-on probe for rapid and selective detection of cysteine in living cells, Biosens. Bioelectron. 68 (2015) 316–21.
[42]X. Wei, L. Qi, J. Tan, R. Liu, and F. Wang, A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles, Anal. Chim. Acta 671 (2010) 80–4.
[43]K. Farhadi, M. Forough, A. Pourhossein, and R. Molaei, Highly sensitive and selective colorimetric probe for determination of l-cysteine in aqueous media based on Ag/Pd bimetallic nanoparticles, Sensor Actuat. B-Chem. 202 (2014) 993–1001.
[44]J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, Fifth Edition: W.H. Freeman, (2002).
[45]D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals of Analytical Chemistry, Cengage Learning, (2013).
[46]L. Feng, Z. Lyu, A. Offenhausser, and D. Mayer, Multi‐level logic gate operation based on amplified aptasensor performance, Angew. Chem. Int. Edit. 54 (2015) 7693–7.
[47]T. K. Kim, T test as a parametric statistic, Korean. J. Anesthsioal 68 (2015) 540-6.