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Abstract 

Anthropogenic activities contribute to the accumulation and mobilization of heavy metals within the soil matrix, which functi ons as 

a terminal reservoir for these pollutants and thereby poses substantial ecological and human health risks. This study evaluated the 

impact of a fossil-fueled thermal power plant in Isfahan Province, Iran, on heavy metal accumulation in the surrounding topsoil. 

Fifty surface soil samples were collected, and the concentrations of eight toxic metals—Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn—were 

determined. Statistical analyses, including factor analysis and Pearson correlation, revealed three distinct metal groupings:  Group I 

(Ni, Pb, Cd), Group II (Cu, Cr, Co), and Group III (Zn, Mn). Group I metals were associated with both  natural and anthropogenic 

sources, while Groups II and III were primarily linked to geogenic origins. To quantify contamination levels, the contaminati on 

factor (CF) and geoaccumulation index (Igeo) were calculated. The results indicated moderate to high contamination levels for Pb 

and Cd, with Cd exhibiting very high CF values across all samples. Furthermore, multivariate calibration using principal component 

regression (PCR) and partial least squares regression (PLS) was employed to predict the pollution  load index (PLI). Both methods 

demonstrated accurate and robust performance in predicting the PLI across calibration and prediction datasets, with R² values  

ranging from 0.861 to 0.965. 
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1. INTRODUCTION 
Energy is a cornerstone of socioeconomic 

development, playing a particularly critical role 

in developing nations [1]. Among the various 

energy forms, electricity is central to modern 

infrastructure, driving both industrialization 

and urban expansion [2]. Electricity generation 

relies on multiple sources, including thermal, 

nuclear, hydroelectric, wind, and solar power. 

Thermal power plants, in particular, produce 

electricity by converting mechanical energy—

generated through high-temperature, high-

pressure steam—into electrical energy via 

turbine systems [3]. 

Fossil fuels such as natural gas, heavy fuel oil, 

and coal are commonly used in thermal power 

plants to generate steam. In Iran, natural gas 

serves as the primary fuel for electricity 

production throughout most of the year. 

However, during peak demand periods, 

especially in winter, power plants often switch 

to liquid fuels like heavy fuel oil or mazut to 

ensure an uninterrupted energy supply [4]. 

Mazut, a low-grade heavy fuel with a carbon 

chain length of 12 to 70 atoms and a thermal 

value of 41.7 MJ/kg [5,6], contributes 

significantly to environmental pollution when 

combusted. The burning of fossil fuels in 

thermal power plants releases various 

atmospheric pollutants, including sulfur oxides 

(SOx), nitrogen oxides (NOx), carbon 

monoxide (CO), and particulate matter such as 

fine dust and fly ash [7,8]. Fly ash is of 

particular concern, as it contains elevated 

concentrations of toxic heavy metals that vary 

depending on the type of fuel used—typically 

including cadmium, chromium, mercury, 

nickel, lead, and zinc [2]. Fly ash emitted from 

combustion stacks often exhibits higher 

concentrations of naturally occurring toxic 

metals than those found in the original fuel or 

surrounding soils [7]. 
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Soil functions as a terminal sink for airborne 

pollutants, allowing heavy metals to 

accumulate and persist over extended periods, 

particularly in agricultural regions [2]. Unlike 

organic contaminants, heavy metals are non-

biodegradable and can irreversibly alter soil 

structure, reduce crop yield and quality, and 

pose significant health risks through 

bioaccumulation in the food chain [9]. 

Although extensive research has investigated 

the environmental impacts of coal-fired 

thermal power plants [2,8–11], comparatively 

fewer studies have focused on gas- and oil-fired 

facilities [1,3,5,12,13]. Previous investigations 

have documented elevated concentrations of 

heavy metals in soils and sediments 

surrounding such plants, with contamination 

levels generally decreasing as the distance from 

the emission source increases [3,13]. 

Moreover, emissions from natural gas 

combustion tend to be lower in particulate 

matter and sulfur compounds; however, 

nitrogen oxides remain a significant 

environmental concern [12]. 

This study aims to evaluate the occurrence and 

enrichment levels of eight toxic metals—Cu, 

Cr, Co, Cd, Pb, Mn, Zn, and Ni—in soils 

surrounding an oil- and natural gas-fired power 

plant located in Isfahan Province, Iran. 

Multivariate statistical techniques were 

employed to identify potential sources of 

contamination. To assess the extent of soil 

pollution, the contamination factor (CF) and 

geoaccumulation index (Igeo) were calculated. 

Additionally, principal component regression 

(PCR) and partial least squares regression 

(PLS) were applied to predict the pollution load 

index (PLI), which serves as a comprehensive 

indicator of overall heavy metal contamination 

in the soil samples. 

 

2. EXPERIMENTAL  
2.1 Study Area and Sampling 

The study site (Figure 1) is located 

approximately 10 km northwest of Isfahan in 

central Iran. The thermal power plant has a 

production capacity of 8 × 250 megawatts. 

Units 1–4 were constructed between 1982 and 

1989, and Units 5–8 between 1996 and 1998. 

Each boiler unit is designed for dual-fuel 

operation, utilizing both natural gas and fuel 

oil, with a maximum steam generation capacity 

of 705 tons per hour. 

The plant is situated near major industrial 

facilities, including the Iran Chemical 

Industries Investment Company—which 

annually produces 50,000 tons of linear alkyl 

benzene and 46,000 tons of normal paraffin—

and the Isfahan Oil Refining Company, which 

is responsible for over 20% of Iran’s oil-related 

products. 

Sixty-seven samples from the study area were 

selected using the grid method. To reduce sample 

handling and associated costs, 17 samples 

(sampling sites: 4, 6, 14, 18, 20, 28, 30, 34, 38, 40, 

46, 50, 52, 54, 56, 60, and 64) were randomly 

omitted. The remaining 50 topsoil samples, 

collected from a depth of 0–15 cm, were analyzed 

for heavy metal concentrations. Among these, 12 

samples (sampling sites: 1, 7, 13, 19, 25, 31, 37, 

43, 49, 55, 61, and 67) were selected for physico-

chemical soil analysis. 

 

 

 

 
Fig. 1.  Geographical location of Isfahan Province, 

location of the thermal power plant and study area (a) 

sampling sites (b) 

 

All soil samples were air-dried at room 

temperature, homogenized, and sieved through 

a 2-mm mesh. Soil pH and electrical 

conductivity (EC) were measured using 

saturated paste extracts. Particle size 

(a) 

(b) 
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distribution (sand, silt, and clay) was 

determined using the hydrometer method. 

Equivalent calcium carbonate (ECC) content 

was quantified via the back titration method 

[14]. Available phosphorus (P) was measured 

following the method of Olson et al. [15], and 

soil organic carbon was determined using the 

Walkley–Black technique [14]. Available 

potassium was extracted using ammonium 

acetate and quantified by flame atomic 

emission spectrometry [16]. 

Heavy metal concentrations (Cu, Cr, Pb, Co, 

Cd, Mn, Ni, and Zn) were measured using 

flame atomic absorption spectroscopy (air–

acetylene flame) following acid digestion with 

HNO₃ and HCl [17]. Results were expressed in 

milligrams per kilogram (mg/kg) of dry soil 

matter.  
 

2.2 Statistical Analysis 

Descriptive and multivariate statistical 

analyses were performed using Minitab 

software (version 17, Minitab Inc.). 

Descriptive statistics—including minimum, 

maximum, mean, median, kurtosis, and 

skewness—were calculated to summarize the 

distribution of the data. 

To examine relationships among variables, 

Pearson’s correlation coefficients were 

computed, with statistical significance set at p 

< 0.05. Principal Component Analysis (PCA) 

was employed to reduce data dimensionality by 

transforming correlated variables into a smaller 

set of uncorrelated principal components (PCs), 

while preserving most of the original variance. 

For improved interpretability, Varimax rotation 

was applied to the PCs, generating rotated 

factors that emphasize underlying patterns. 

Factor Analysis (FA) was used to identify 

latent variables responsible for the observed 

correlations among the measured parameters 

[18]. 

PCR and PLS approaches were applied as 

supervised learning techniques to model and 

predict the pollution load index (PLI). Both 

methods establish predictive relationships 

between input variables (X) and a target output 

variable (y) using a calibration dataset. PCR 

involves performing PCA on the input matrix 

X, followed by multiple linear regression using 

selected PCs that best explain the variance in y. 

In contrast, PLS extracts latent variables by 

maximizing the covariance between X and y, 

thereby enhancing predictive accuracy [19]. 

 

2.3 Evaluation of Trace Element 

Contamination in Soils 

To quantify soil contamination, the 

Contamination Factor (CF) and 

Geoaccumulation Index (Igeo) were calculated. 

Contamination Factor (CF) was computed 

using the equation (1): 

CF =
(Cn)soil

(C𝑛)background
   (1) 

where (𝐶𝑛)soil and (𝐶𝑛)background represent the 

concentrations of metal n in the soil sample and 

background environment, respectively [20].  

CF values were classified as follows: CF<1 

(low contamination), 1 ≤ CF ≤ 3 (moderate 

contamination),3≤CF ≤ 6 (high contamination), 

and CF > 6 (very high contamination). 

Geoaccumulation Index (Igeo) was calculated 

using the equation (2): 

I𝑔𝑒𝑜 = 𝑙𝑜𝑔2(
𝐶𝑛

1.5𝐵𝑛
)   (2) 

where 𝐶𝑛 is the measured concentration of 

metal n in the soil, and 𝐵𝑛 is its background 

concentration in shale. Pollution levels were 

categorized as: Igeo ≤ 0: Practically unpolluted 

(Class 0), 0 < Igeo ≤ 1: Unpolluted to moderately 

polluted (Class 1), 1 < Igeo ≤ 2: Moderately 

polluted (Class 2), 2 < Igeo ≤ 3: Moderately to 

heavily polluted (Class 3), 3 < Igeo ≤ 4: Heavily 

polluted (Class 4), 4 < Igeo ≤ 5: Heavily to 

extremely polluted (Class 5) and Igeo ≥ 5: 

Extremely polluted (Class 6) [21]. 

Pollution load index (PLI) was used to assess 

the overall pollution level of soil samples. It 

was calculated as the geometric mean of the 

individual CF values for all metals: 

PLI = (𝐶𝐹1 × 𝐶𝐹2 × …× 𝐶𝐹𝑛)
1/𝑛  (3) 

where n is the number of metals analyzed. PLI 

values were used to classify the soil samples 

into four contamination levels: unpolluted (PLI 

≤ 1), moderately polluted (PLI between 1 and 

3), highly polluted (PLI between 3 and 5), and 

very highly polluted (PLI > 5) [22]. 

 

3. RESULTS AND DISCUSSION 

3.1 Soil Characteristics 
Table 1 summarizes the physico-chemical 

properties of 12 soil samples collected from the 

study area. The pH values ranged from 7.21 to 

7.88, with a mean of 7.67, indicating slightly 

alkaline conditions—primarily due to elevated 

carbonate content. Calcium carbonate (CaCO₃) 
levels varied between 30.0% and 42.5%, 

averaging 35.0%. The mean organic matter 

(OM) content was 0.71%, with a wide range 

from 0.32% to 1.64%, indicating low to 

moderate fertility. 

Electrical conductivity (EC), an indicator of 

salinity and nutrient availability, ranged from 

0.63 to 11.25 mS/dm, with a mean of 2.12 

mS/dm. Particle size analysis revealed clay 

content between 9.0% and 21.0% (mean: 

14.3%), silt between 5.0% and 47.0% (mean: 

28.3%), and sand between 17.0% and 86.0% 

(mean: 54.9%). Based on these proportions, the 
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soils were classified as sandy loam (sites 1, 13, 

19, 37, 43, 49, 55, 61, and 67), loam (sites 7 and 

31), and loamy sand (site 25). 

 

Table 1. Summary statistics for the physico-

chemical soil properties 

 

 
 

 

3.2 Heavy Metals Concentrations in the Soils 

Table 2 presents the concentrations of eight 

heavy metals in the soil samples. The mean 

values (in mg/kg) were as follows: Mn (336.84) 

> Zn (95.80) > Ni (54.51) > Pb (42.87) > Cr 

(20.79) > Cu (14.67) > Co (14.02) > Cd (4.67). 

A one-sample t-test (p < 0.05) revealed that the 

average concentrations of most toxic metals 

(excluding Co and Zn) significantly differed 

from their respective background values 

reported for Isfahan Province [23]. 

Analysis of heavy metal concentrations in the 

soil samples revealed varying levels of 

contamination across different elements. For 

copper (Cu), 96% of the samples exhibited 

concentrations below the regional background 

level of 25.70 mg/kg, indicating minimal Cu 

contamination. Although the mean 

concentration of zinc (Zn) exceeded its 

background value (79.60 mg/kg), 72% of the 

samples remained below this threshold, 

suggesting only slight enrichment of Zn in the 

study area. All samples showed manganese 

(Mn) and chromium (Cr) concentrations below 

their respective background levels (641.2 

mg/kg for Mn and 90.9 mg/kg for Cr), 

confirming the absence of significant 

enrichment for these elements. 

In contrast, cadmium (Cd) and lead (Pb) were 

found at elevated levels in nearly all samples. 

Cd concentrations exceeded the background 

value of 0.26 mg/kg in 100% of the samples, 

while Pb surpassed its threshold of 28.10 mg/kg 

in 98% of cases—highlighting a strong 

anthropogenic influence on their distribution. 

The average concentration of nickel (Ni) was 

slightly below its background level (59.30 

mg/kg), with 28% of samples exceeding this 

value. Additionally, cobalt (Co) concentrations 

were above the background level (13.3 mg/kg) 

in 68% of the samples, suggesting possible 

accumulation due to human activities. 

 

Table 2. Summary statistics for the eight heavy 

metal concentrations in soil samples of study area 

(mg/ kg) (n=50) 

 

3.3 Correlation and Factor Analysis 

Table 3 shows Pearson correlation coefficients 

among the heavy metals. Significant 

correlations (p < 0.05) were observed for Cu/Ni 

(r = 0.30), Zn/Pb (r = – 0.33), Ni/Cd (r = 0.30), 

and Ni/Pb (r=0.54). However, overall 

correlation strengths were relatively low, 

indicating limited linear relationships among 

most metal pairs. 

 

Table 3. The correlations between the contents of 

8 heavy metals 

 

To further explore underlying patterns, factor 

analysis was conducted (Table 4). The factor 

analysis revealed three principal components 

that explain the distribution patterns of heavy 

metals in the soil. Three factors with 

eigenvalues greater than 1 were extracted, 

explaining a cumulative variance of 61.4%. 

Figure 2a visualizes the relationships among 

the metals. Factor 1 (F1), accounting for 21.5% 

of the total variance, exhibited strong positive 

loadings for Pb, Cd, and Ni, indicating that 

these elements likely originate from a 

combination of natural and anthropogenic 

sources such as industrial emissions and fossil 

fuel combustion—especially given the notable 

enrichment of Pb and Cd and partial enrichment 

of Ni. Factor 2 (F2), which also explained 

21.5% of the variance, showed moderate to 

strong negative loadings for Cu, Cr, and Co; the 

concentrations of these metals were generally 

near or below their background levels, 
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suggesting that their presence is primarily 

controlled by natural geogenic processes. 

Factor 3 (F3) accounted for 18.4% of the 

variance and was characterized by high positive 

loadings for Mn and Zn, both of which were 

largely below background concentrations, 

implying that their distribution is governed by 

lithogenic factors. 

 

Table 4.  Varimax-rotated factor loadings for the 

measured variables 

 

 
 

Figure 2b illustrates the distribution of soil 

samples based on their scores for Factor 1 (F1) 

and Factor 2 (F2), revealing that most samples 

are clustered near the center of the plot, 

indicative of similar chemical compositions 

across the study area. However, several 

sampling stations displayed distinct separation, 

suggesting localized variations in 

contamination. For instance, Station 66 shows 

a negative correlation with F1 due to lower 

concentrations of Cd (4.0 mg/kg), Pb 

(26.5 mg/kg), and Ni (40.0 mg/kg). In contrast, 

Station 1 stands out with the highest levels of 

Pb (61.5 mg/kg) and Ni (75.5 mg/kg), along 

with the second-highest Cu concentration 

(32.5 mg/kg), suggesting notable 

anthropogenic impact. Station 42 is 

distinguished by low Cu (8.5 mg/kg) and 

elevated Pb (61.5 mg/kg), while Station 12 is 

negatively associated with F2 due to its 

elevated Cu (38.5 mg/kg) and Co (16.0 mg/kg) 

levels. These spatial patterns point to localized 

contamination likely driven by industrial 

emissions and fossil fuel combustion near the 

power plant.   

 

3.4 Environmental Pollution Levels  

To assess the degree of heavy metal 

contamination in the soil samples, two indices 

were calculated: The contamination factor (CF) 

and the geoaccumulation index (Igeo). As 

illustrated in Figure 3, CF values for chromium 

(Cr), manganese (Mn), and copper (Cu) were 

below 1 in all or nearly all samples, indicating 

low contamination levels for these metals. Zinc 

(Zn) showed more variability, with 72% of 

samples having CF values below 1, 20% 

between 1 and 3, and 8% exceeding 3. This 

indicates that Zn contamination is generally 

low, though moderate to high levels were 

observed in specific locations (sampling sites 

1, 24, 61, 55, 63, and 57). Lead (Pb) 

contamination was more widespread, with over 

98% of samples falling within the moderate 

contamination range (CF between 1 and 3). 

Nickel (Ni) exhibited low contamination in 

72% of samples, while the remaining 28% 

showed moderate levels. Cobalt (Co) also 

demonstrated moderate contamination in 72% 

of samples. Cadmium (Cd) displayed a notable 

contamination profile, as CF values exceeded 6 

in all samples. Such consistently high levels 

point to widespread contamination and 

underscore the considerable anthropogenic 

impact of Cd in the study area. 

 

 

Fig. 2. Factor analysis 3-D loading plot (a), Score 

plot of F1 versus F2 (b) 

The Igeo index was used to further evaluate 

pollution levels relative to natural background 

concentrations. As shown in Figure 4, the 

average pollution ranking of the eight metals 

was Pb > Cd > Zn > Cr > Mn > Ni > Co > Cu. 

For Cr, Mn, Ni, Co, and Cu, all Igeo values were 

below zero (Class 0), indicating that these 

elements are essentially unpolluted across the 

study area. 

Zn displayed a broader distribution: 80% of 

samples were unpolluted (Class 0), while the 

remaining 20% ranged from moderately 

Ni 

Pb 

Cd 

Co Cr 
Cu 

Zn 

Mn 
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polluted to extremely polluted, with 4% of 

samples falling into Class 6. 

 

 
Fig. 3. Contamination factor index (CF) values for 8 

heavy metals in the studied soils 

Cd was consistently classified in Class 1 (Igeo 

between 1 and 2), suggesting soils were 

unpolluted to moderately polluted. Pb showed 

the most diverse pollution profile, with 42% of 

samples in Class 0 and the remaining 58% 

distributed across Classes 1 to 6. Specifically, 

4% were moderately polluted (Class 2), 10% 

heavily polluted (Class 4), 14% heavily to 

extremely polluted (Class 5), and 30% 

extremely polluted (Class 6). These results 

highlight Pb and Cd as the dominant pollutants 

in the study area, with localized zones of severe 

contamination. 

 

 

 
 
Fig. 4. Pie charts of the relative proportions of geo-

accumulation index (Igeo) values according to Müller 

class 

3.5 Multivariate Calibration 

To predict the pollution load index (PLI) with 

high accuracy, both PLS and PCR models were 

applied. Leave-one-out cross-validation was 

used to determine the optimal number of latent 

factors (principal components) that best 

represent the calibration data while minimizing 

overfitting. A total of 50 soil samples were 

analyzed, of which 80% (40 samples) were 

randomly selected as the calibration set, while 

the remaining 20% (10 samples) were reserved 

for prediction. To evaluate the predictive 

performance of the multivariate calibration 

models, three statistical metrics were used: the 

root mean square error of calibration (RMSEc), 

the root mean square error of prediction 

(RMSEp), and the coefficient of determination 

(R²). Additional details regarding model 

performance parameters are available in 

referenced literature [19, 24]. As summarized 

in Table 5, both models performed well using 

four latent factors; however, the PLS model 

consistently demonstrated superior predictive 

accuracy. Specifically, PLS yielded higher R² 

values and lower RMSEs across both 

calibration and prediction datasets. Figure 5 

illustrates the strong correlation between 

observed and predicted PLI values for both 

models, confirming the reliability of the 

multivariate calibration approach and 

underscoring the effectiveness of PLS in 

predicting environmental pollution levels in 

complex soil systems. 

 

Table 5. Statistical parameters calculated for the 

calibration and prediction sets using PLS and PCR 

models 

 

 
 

 

4. CONCLUSIONS 

This study investigated the extent of heavy metal 

contamination in soils surrounding a fossil-fueled 

power plant in Isfahan Province, Iran. The results 

demonstrated that the average concentrations of 

several hazardous metals—particularly Pb, Cd, 

and Ni—significantly exceeded regional 

background levels, indicating notable enrichment. 

Contamination factor (CF) analysis revealed 

moderate to high contamination for Pb and Cd, and 

partial enrichment for Ni, suggesting that these 

metals predominantly originate from 

anthropogenic activities such as industrial 

emissions and fuel combustion. Geoaccumulation 

index (Igeo) values further supported these findings, 

with nearly 60% of soil samples falling into the 

moderately to extremely polluted categories for 

Pb, and all samples exhibiting moderate pollution 

levels for Cd. Multivariate factor analysis 

confirmed that Pb, Cd, and Ni are associated with 

a mixed origin, influenced by both natural and 

human-induced sources, while the remaining 

metals appear to be primarily governed by natural 

geogenic processes. These findings underscore the 
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environmental impact of industrial operations in 

the region and highlight the need for continued 

monitoring and targeted mitigation strategies.  

 

 
 
Fig. 5.  Parity plot of the measured and predicted values 

of the PLI by the PCR (a) and PLS (b) approaches 
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 چکیده
خطرات  جه،یعمل کرده و در نت هاندهیآلا نیا ییعنوان مخزن نهاکه به یطیمح شود؛یخاک م سیدر ماتر نیفلزات سنگ ییموجب تجمع و جابجا یانسان یهاتیفعال

 زانیبر م ران،یادر استان اصفهان،  یلیبا سوخت فس یحرارت روگاهین کی ریتأث یمطالعه به بررس نای همراه دارد.و سلامت انسان به ستیزطیمح یبرا یتوجهقابل
کادمیوم، کبالت، شامل  یشد و غلظت هشت فلز سم یآورجمع یر مجموع، پنجاه نمونه خاک سطحد اطراف آن پرداخته است. یدر خاک سطح نیتجمع فلزات سنگ

شناسایی بندی فلزی متمایز را های آماری، از جمله تحلیل عاملی و همبستگی پیرسون، سه گروهشد. تحلیل اندازه گیری کروم، مس، منگنز، نیکل، سرب و روی 
رتبط بودند، در حالی : گروه اول )نیکل، سرب، کادمیوم(، گروه دوم )مس، کروم، کبالت( و گروه سوم )روی، منگنز(. فلزات گروه اول با منابع طبیعی و انسانی مکرد

نشان  جینتا محاسبه شدند. )geoI (و شاخص زمین انباشتگی )CF (سطوح آلودگی، فاکتور آلودگی زاد بودند. برای تعیینزمین عمدتاهای دوم و سوم گروه منشا که
از روش های علاوه بر این،  را نشان داد. CFاز  ییبالا اریبس ریها مقادنمونه یدر تمام ومیهستند و کادم ادیمتوسط تا ز یسطوح آلودگ یدارا ومیداد که سرب و کادم

استفاده  (PLI) بینی شاخص بار آلودگیبرای پیش (PLS) و رگرسیون حداقل مربعات جزئی (PCR) های اصلیرگرسیون مؤلفه شاملکالیبراسیون چند متغیره 
 بینی نشان دادند،های کالیبراسیون و پیشدر مجموعه دادهرا  965/0تا  861/0 بین R² مقادیربا  PLI بینیدر پیشدقیق و قابل اعتمادی عملکرد  مدل. هر دو شد
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