[1] Y. Qi. D. R. Mould. H. Zhou. M. Merilainen, D. G. Musson, A prospectivpopulation pharmacokinetic analysis of sapropterin dihydrochloride in infants and young children with phenylketonuria. Clinical pharmacokinetics 54, 195-207 (2015). https://doi.org/10.1007/s40262-014-0196-4.
[2] M. Welsh. B. Ramsey. F. Accurso. G. Cutting. C. Scriver. A. Beaudet. W. Sly, D. Valle, The metabolic & molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; pp. 5121–5188 (2001).
[3] M. Kamruzzaman. A.-M. Alam. K. M. Kim. S. H. Lee. Y. H. Kim. G. M. Kim, T. D. Dang, Microfluidic chip based chemiluminescence detection of L-phenylalanine in pharmaceutical and soft drinks. Food Chemistry 135, 57-62 (2012). https://doi.org/10.1016/j.foodchem.2012.04.062
[4] A. Glushakov. D. Dennis. T. Morey. C. Sumners. R. Cucchiara. C. Seubert, A. Martynyuk, Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Molecular Psychiatry 7-, 359-367 (2002). https://doi.org/10.1038/sj.mp.4000976
[5] M. Saha, S. Das, Fabrication of a nonenzymatic cholesterol biosensor using carbonnanotubes from coconut oil. Journal of Nanostructure in Chemistry 4, 1-9 (2014). https://doi.org/ 10.1007/s40097-014-0094-1
[6] R. Guthrie, A. Susi, A Simple Method for Detecting Phenylketonuria in Large Populations of Newborn Infants. Pediatrics 32, 338-343 (1963).
[7] K. Zhang. H.-T. Yan, T. Zhou, Spectrofluorimetric determination of phenylalanine based on fluorescence enhancement of europium ion immobilized with sol–gel method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 83, 155-160 (2011). https://doi.org/10.1016/j.saa.2011.08.007
[8] S. M. Naghib. M. Rabiee, E. Omidinia, Electrochemical Biosensor for L-phenylalanine Based on a Gold Electrode Modified with Graphene Oxide Nanosheets and Chitosan. Int. J. Electrochem. Sci 9, 2341-2353 (2014). https://doi.org/10.1016/S1452-3981(23)07931-2
[9] H. Qiu. Y. Xi. F. Lu. L. Fan, C. Luo, Determination of l-phenylalanine on-line based on molecularly imprinted polymeric microspheres and flow injection chemiluminescence.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 86, 456-460 (2012). https://doi.org/10.1016/j.saa.2011.10.068
[10] J.-S. Jeong. H.-J. Sim. Y.-M. Lee. H.-R. Yoon. H.-J. Kwon, S.-P. Hong, Chromatographic diagnosis of maple syrup urine disease by measuring the l-alloisoleucine/l-phenylalanine ratio in dried blood spots. Journal of Chromatography B 879, 2171-2174 (2011). https://doi.org/10.1016/j.jchromb.2011.05.023
[11] G. Thiessen. R. Robinson. K. De Los Reyes. R. J. Monnat, E. Fu, Conversion of a laboratory-based test for phenylalanine detection to a simple paper-based format and implications for PKU screening in low-resource settings. Analyst 140, 609-615 (2015). https://doi.org/10.1039/C4AN01627K
[12] D. R. Mishra. S. M. Darjee. K. D. Bhatt. K. M. Modi, V. K. Jain, Calix protected gold nanobeacon as turn-off fluorescent sensor for phenylalanine. Journal of Inclusion Phenomena and Macrocyclic Chemistry 82, 425-436 (2015). https://doi.org/10.1007/s10847-015-0509-8
[13] G. Neurauter. S. Scholl-Bürgi. A. Haara. S. Geisler. P. Mayersbach. H. Schennach, D. Fuchs, Simultaneous measurement of phenylalanine and tyrosine by high performance liquid chromatography (HPLC) with fluorescence detection. Clinical biochemistry 46, 1848-1851 (2013). https://doi.org/10.1016/j.clinbiochem.2013.10.015
[14] J. W. Costin. P. S. Francis, S. W. Lewis, Selective determination of amino acids using flow injection analysis coupled with chemiluminescence detection. Analytica Chimica Acta 480, 67-77 (2003). https://doi.org/10.1016/S0003-2670(02)01645-8
[15] E. Omidinia. N. Shadjou, M. Hasanzadeh, (Fe3O4)-graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine. Materials Science and Engineering: C 33, 462-4-4632 (2013). https://doi.org/10.1016/j.msec.2013.07.023
[16] Y.-F. Hu. Z.-H. Zhang. H.-B. Zhang. L.-J. Luo, S.-Z. Yao, Electrochemical determination of l-phenylalanine at polyaniline modified carbon electrode based on β-cyclodextrin incorporated carbon nanotube composite material and imprinted sol–gel film. Talanta 84, 305-313 (2011). https://doi.org/10.1016/j.talanta.2011.01.010
[17] S. Majdi, A. Jabbari, H. Heli, A.A.Moosavi-Movahedi, Electrocatalytic oxidation of some amino acids on a nickel–curcumin complex modified glassy carbon electrode. Electrochimica Acta 52, 4622-4629 (2007). https://doi.org/10.1016/j.electacta.2007.01.022
[18] V. Kacaniklic, K. Johansson, G. Marko–Varga, L. Gorton, G. Jönsson–Pettersson, E. Csöregi, Amperometric biosensors for detection of L- and D-amino acids based on coimmobilized peroxidase and L- and D-amino acid oxidases in carbon paste electrodes. Electroanalysis 6, 381–390 (1994). https://doi.org/10.1002/elan.1140060505
[19] P. K. Kalambate. M. R. Biradar. S. P. Karna, A. K. Srivastava, Adsorptive stripping differential pulse voltammetry determination of rivastigmine at graphene nanosheet-gold nanoparticle/carbon paste electrode. Journal of Electroanalytical Chemistry 757, 150-158 (2015). https://doi.org/10.1016/j.jelechem.2015.09.027
[20] B. J. Sanghavi, A. K. Srivastava, Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Analytica chimica acta 706, 246-254 (2011). https://doi.org/10.1016/j.aca.2011.08.040
[21] T. Madrakian. E. Haghshenas, A. Afkhami, Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method. Sensors and Actuators B: Chemical 193, 451-460 (2014). https://doi.org/10.1016/j.snb.2013.11.117
[22] K. Borsos, G. Inzelt, A new electrode for acid-base titration based on poly(copper phthalocyanine). Journal of Solid State Electrochemistry 20, 1215-122 (2016). https://doi.org/10.1007/s10008-015-2899-3
[23] I. Ponce. J. F. Silva. R. Oñate. M. C. Rezende. M. A. Paez. J. H. Zagal. J. Pavez. F. Mendizabal. S. N. Miranda-Rojas, A. Muñoz-Castro, Enhancement of the Catalytic Activity of Fe Phthalocyanine for the Reduction of O2 Anchored to Au(111) via Conjugated Self-Assembled Monolayers of Aromatic Thiols As Compared to Cu Phthalocyanine. The Journal of Physical Chemistry C 116,15329-15341 (2012). https://doi.org/10.1021/jp301093q
[24] C. Uhlmann. I. Swart, J. Repp, Controlling the Orbital Sequence in Individual Cu-Phthalocyanine Molecules. Nano letters 13, 77-780 (2013). https://doi.org/10.1021/nl304483h
[25] W. Bala. M. Wojdyla. M. Rebarz. M. Szybowic. M. Drozdowski. A. Grodzicki, P. Piszczek, Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra. Journal of Optoelectronics and Advanced Materials 11, 264-269 (2009).
[26] M. Izaki. R. Hisamatsu. T. Saito. K. Murata. J. Sasano, T. Shinagawa, Hybrid zinc oxide:Cu-phthalocyanine bulk-heterojunction photovoltaic device. RSC Advances 4, 14956-14961(2014). https://doi.org/10.1039/C4RA01051E
[27] A. J. Bard. L. R. Faulkner. J. Leddy, C. G. Zoski, Electrochemical methods: fundamentals and applications. Wiley New York (1980).
[28] R. Villalonga. A. Fujii. H. Shinohara. S. Tachibana, Y. Asano, Covalent immobilization of phenylalanine dehydrogenase on cellulose membrane for biosensor construction. Sensors and Actuators B: Chemical 129, 195-199 (2008). https://doi.org/10.1016/j.snb.2007.07.097
[29] R. Villalonga. A. Fujii. H. Shinohara. Y. Asano. R. Cao. S. Tachibana, P. Ortiz, Supramolecular-mediated immobilization of l-phenylalanine dehydrogenase on cyclodextrin-coated Au electrodes for biosensor applications. Biotechnology letters 29, 447-452 (2007). https://doi.org/10.1007/s10529-006-9259-4
[30] S. M. Naghib. M. Rabiee. E. Omidinia, P. Khoshkenar, Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on a polymer-blend film for phenylketonuria diagnosis. Electroanalysis 24, 407-417 (2012). https://doi.org/10.1002/elan.201100391
[31] I. Akyilmaz, N. Y. Demir, D. Bas, M. Duman, Precision phenylalanine sensing in blood with nanomaterial-enhanced electrodes, RSC Adv. 14, 29874 (2024). https://doi.org/ 10.1039/d4ra05045b
[32] X. Xu, D. Ji, Y. Zhang, X. Gao, P. Xu, X. Li, C. C. Liu , W. Wen, Detection of Phenylketonuria markers using a ZIF-67 encapsulated PtPd elloy nanoparticle (PtPd@ZIF-67)-based disposable electrochemical microsensor, ACS Appl. Mater. Interfaces 11, 20734 20742 (2019). https://doi.org/ 10.1021/acsami.9b05431
[33] C. M. Moreira, S. V. Pereira, J. Raba, F. A. Bertolino, G. A. Messina, Paper-based enzymatic platform coupled to screen printed graphene-modified electrode for the fast neonatal screening of phenylketonuria Clin. Chim. Acta 486, 59–65 (2018). https://doi.org/ 10.1016/j.cca.2018.07.016.