In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of advanced Technology, Kerman, Iran

2 Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran

10.30473/ijac.2025.74734.1321

Abstract

Monitoring the blood levels of phenylalanine, an essential amino acid, plays a vital role in the treatment of phenylketonuria. Cu-phthalocyanine (CuPC) and Au nanoparticles (AuNPs)-mediated non-enzymatic carbon paste electrode (CPE) has been developed for the electrochemical monitoring of L-phenylalanine (L-phe). The oxidation signal of L-phe was not observed on bare CPE or AuNPs/CPE. Although AuNPs was not involved in the apparition of L-phe oxidation peak, it enhanced the oxidation current. Using AuNPs-CuPC/CPE, we have successfully determined the different concentrations of L-phe with no need to any enzyme on the electrode surface. The performance characteristics of this sensor were accomplished with differential pulse anodic stripping voltammetry (DPASV) and cyclic voltammetry (CV). After optimizing the experimental parameters, L-phe gave a linear response over the concentration range of 1.0-130.0 µM with the detection limit of 0.41 µM. The practical applications of the modified electrode were demonstrated by measuring the concentration of L-phe in blood serum and urine samples.

Keywords

[1] Y. Qi. D. R. Mould. H. Zhou. M. Merilainen, D. G. Musson, A prospectivpopulation pharmacokinetic analysis of sapropterin dihydrochloride in infants and young children with phenylketonuria. Clinical pharmacokinetics 54, 195-207 (2015). https://doi.org/10.1007/s40262-014-0196-4.
[2] M. Welsh. B. Ramsey. F. Accurso. G. Cutting. C. Scriver. A. Beaudet. W. Sly, D. Valle, The metabolic & molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; pp. 5121–5188 (2001).
[3] M. Kamruzzaman. A.-M. Alam. K. M. Kim. S. H. Lee. Y. H. Kim. G. M. Kim, T. D. Dang, Microfluidic chip based chemiluminescence detection of L-phenylalanine in pharmaceutical and soft drinks. Food Chemistry 135, 57-62 (2012). https://doi.org/10.1016/j.foodchem.2012.04.062
[4] A. Glushakov. D. Dennis. T. Morey. C. Sumners. R. Cucchiara. C. Seubert, A. Martynyuk, Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Molecular Psychiatry 7-, 359-367 (2002). https://doi.org/10.1038/sj.mp.4000976
[5] M. Saha, S. Das, Fabrication of a nonenzymatic cholesterol biosensor using carbonnanotubes from coconut oil. Journal of Nanostructure in Chemistry 4, 1-9 (2014). https://doi.org/ 10.1007/s40097-014-0094-1
[6] R. Guthrie, A. Susi, A Simple Method for Detecting Phenylketonuria in Large Populations of Newborn Infants. Pediatrics 32, 338-343 (1963).
[7] K. Zhang. H.-T. Yan, T. Zhou, Spectrofluorimetric determination of phenylalanine based on fluorescence enhancement of europium ion immobilized with sol–gel method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 83, 155-160 (2011). https://doi.org/10.1016/j.saa.2011.08.007
[8] S. M. Naghib. M. Rabiee, E. Omidinia, Electrochemical Biosensor for L-phenylalanine Based on a Gold Electrode Modified with Graphene Oxide Nanosheets and Chitosan. Int. J. Electrochem. Sci 9, 2341-2353 (2014). https://doi.org/10.1016/S1452-3981(23)07931-2
[9] H. Qiu. Y. Xi. F. Lu. L. Fan, C. Luo, Determination of l-phenylalanine on-line based on molecularly imprinted polymeric microspheres and flow injection chemiluminescence.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 86, 456-460 (2012). https://doi.org/10.1016/j.saa.2011.10.068
[10] J.-S. Jeong. H.-J. Sim. Y.-M. Lee. H.-R. Yoon. H.-J. Kwon, S.-P. Hong, Chromatographic diagnosis of maple syrup urine disease by measuring the l-alloisoleucine/l-phenylalanine ratio in dried blood spots. Journal of Chromatography B 879, 2171-2174 (2011). https://doi.org/10.1016/j.jchromb.2011.05.023
[11] G. Thiessen. R. Robinson. K. De Los Reyes. R. J. Monnat, E. Fu, Conversion of a laboratory-based test for phenylalanine detection to a simple paper-based format and implications for PKU screening in low-resource settings. Analyst 140, 609-615 (2015). https://doi.org/10.1039/C4AN01627K
[12] D. R. Mishra. S. M. Darjee. K. D. Bhatt. K. M. Modi, V. K. Jain, Calix protected gold nanobeacon as turn-off fluorescent sensor for phenylalanine. Journal of Inclusion Phenomena and Macrocyclic Chemistry 82, 425-436 (2015). https://doi.org/10.1007/s10847-015-0509-8
[13] G. Neurauter. S. Scholl-Bürgi. A. Haara. S. Geisler. P. Mayersbach. H. Schennach, D. Fuchs, Simultaneous measurement of phenylalanine and tyrosine by high performance liquid chromatography (HPLC) with fluorescence detection. Clinical biochemistry 46, 1848-1851 (2013). https://doi.org/10.1016/j.clinbiochem.2013.10.015
[14] J. W. Costin. P. S. Francis, S. W. Lewis, Selective determination of amino acids using flow injection analysis coupled with chemiluminescence detection. Analytica Chimica Acta 480, 67-77 (2003). https://doi.org/10.1016/S0003-2670(02)01645-8
[15] E. Omidinia. N. Shadjou, M. Hasanzadeh, (Fe3O4)-graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine. Materials Science and Engineering: C 33, 462-4-4632 (2013). https://doi.org/10.1016/j.msec.2013.07.023
[16] Y.-F. Hu. Z.-H. Zhang. H.-B. Zhang. L.-J. Luo, S.-Z. Yao, Electrochemical determination of l-phenylalanine at polyaniline modified carbon electrode based on β-cyclodextrin incorporated carbon nanotube composite material and imprinted sol–gel film. Talanta 84, 305-313 (2011). https://doi.org/10.1016/j.talanta.2011.01.010
[17] S. Majdi, A. Jabbari, H. Heli, A.A.Moosavi-Movahedi, Electrocatalytic oxidation of some amino acids on a nickel–curcumin complex modified glassy carbon electrode. Electrochimica Acta 52, 4622-4629 (2007). https://doi.org/10.1016/j.electacta.2007.01.022
[18] V. Kacaniklic, K. Johansson, G. Marko–Varga, L. Gorton, G. Jönsson–Pettersson, E. Csöregi, Amperometric biosensors for detection of L- and D-amino acids based on coimmobilized peroxidase and L- and D-amino acid oxidases in carbon paste electrodes. Electroanalysis 6, 381–390 (1994). https://doi.org/10.1002/elan.1140060505
[19] P. K. Kalambate. M. R. Biradar. S. P. Karna, A. K. Srivastava, Adsorptive stripping differential pulse voltammetry determination of rivastigmine at graphene nanosheet-gold nanoparticle/carbon paste electrode. Journal of Electroanalytical Chemistry 757, 150-158 (2015). https://doi.org/10.1016/j.jelechem.2015.09.027
[20] B. J. Sanghavi, A. K. Srivastava, Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Analytica chimica acta 706, 246-254 (2011). https://doi.org/10.1016/j.aca.2011.08.040
[21] T. Madrakian. E. Haghshenas, A. Afkhami, Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method. Sensors and Actuators B: Chemical 193, 451-460 (2014). https://doi.org/10.1016/j.snb.2013.11.117
[22] K. Borsos, G. Inzelt, A new electrode for acid-base titration based on poly(copper phthalocyanine). Journal of Solid State Electrochemistry 20, 1215-122 (2016). https://doi.org/10.1007/s10008-015-2899-3
[23] I. Ponce. J. F. Silva. R. Oñate. M. C. Rezende. M. A. Paez. J. H. Zagal. J. Pavez. F. Mendizabal. S. N. Miranda-Rojas, A. Muñoz-Castro, Enhancement of the Catalytic Activity of Fe Phthalocyanine for the Reduction of O2 Anchored to Au(111) via Conjugated Self-Assembled Monolayers of Aromatic Thiols As Compared to Cu Phthalocyanine. The Journal of Physical Chemistry C 116,15329-15341 (2012). https://doi.org/10.1021/jp301093q
[24] C. Uhlmann. I. Swart, J. Repp, Controlling the Orbital Sequence in Individual Cu-Phthalocyanine Molecules. Nano letters 13, 77-780 (2013). https://doi.org/10.1021/nl304483h
[25] W. Bala. M. Wojdyla. M. Rebarz. M. Szybowic. M. Drozdowski. A. Grodzicki, P. Piszczek, Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra. Journal of Optoelectronics and Advanced Materials 11, 264-269 (2009).
[26] M. Izaki. R. Hisamatsu. T. Saito. K. Murata. J. Sasano, T. Shinagawa, Hybrid zinc oxide:Cu-phthalocyanine bulk-heterojunction photovoltaic device. RSC Advances 4, 14956-14961(2014). https://doi.org/10.1039/C4RA01051E
[27] A. J. Bard. L. R. Faulkner. J. Leddy, C. G. Zoski, Electrochemical methods: fundamentals and applications. Wiley New York (1980).
[28] R. Villalonga. A. Fujii. H. Shinohara. S. Tachibana, Y. Asano, Covalent immobilization of phenylalanine dehydrogenase on cellulose membrane for biosensor construction. Sensors and Actuators B: Chemical 129, 195-199 (2008). https://doi.org/10.1016/j.snb.2007.07.097
[29] R. Villalonga. A. Fujii. H. Shinohara. Y. Asano. R. Cao. S. Tachibana, P. Ortiz, Supramolecular-mediated immobilization of l-phenylalanine dehydrogenase on cyclodextrin-coated Au electrodes for biosensor applications. Biotechnology letters 29, 447-452 (2007). https://doi.org/10.1007/s10529-006-9259-4
[30] S. M. Naghib. M. Rabiee. E. Omidinia, P. Khoshkenar, Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on a polymer-blend film for phenylketonuria diagnosis. Electroanalysis 24, 407-417 (2012). https://doi.org/10.1002/elan.201100391
[31] I. Akyilmaz, N. Y. Demir, D. Bas, M. Duman, Precision phenylalanine sensing in blood with nanomaterial-enhanced electrodes, RSC Adv. 14, 29874 (2024). https://doi.org/ 10.1039/d4ra05045b
[32] X. Xu, D. Ji, Y. Zhang, X. Gao, P. Xu, X. Li, C. C. Liu , W. Wen, Detection of Phenylketonuria markers using a ZIF-67 encapsulated PtPd elloy nanoparticle (PtPd@ZIF-67)-based disposable electrochemical microsensor, ACS Appl. Mater. Interfaces 11, 20734 20742 (2019). https://doi.org/ 10.1021/acsami.9b05431
[33] C. M. Moreira, S. V. Pereira, J. Raba, F. A. Bertolino, G. A. Messina, Paper-based enzymatic platform coupled to screen printed graphene-modified electrode for the fast neonatal screening of phenylketonuria Clin. Chim. Acta 486, 59–65 (2018). https://doi.org/ 10.1016/j.cca.2018.07.016.