[1] P. Zhurauski, Electrochemical detection of cancer biomarkers, University of Bath (2017).
[2] V. Naresh and N. Lee, A review on biosensors and recent development of nanostructured materials-enabled biosensors, Sensors 21 (2021) 1109.
[3] L. Hadian-Dehkordi, et al., DNA–metal composites as bioinspired catalysts in chemical reactions, Coord. Chem. Rev. 505 (2024) 215635.
[4] S.A. Dar, et al., Biosensors: components and applications—A review, Trends Eng. Appl. Sci. Manag. (2018).
[5] B. Nikhil, et al., Introduction to biosensors, Essays Biochem. 60 (2016) 1–8.
[6] A. Williams, et al., Biosensors for public health and environmental monitoring: the case for sustainable biosensing, ACS Sustain. Chem. Eng. 12 (2024) 10296–10312.
[7] M. Hemdan, et al., Innovations in biosensor technologies for healthcare diagnostics and therapeutic drug monitoring: applications, recent progress, and future research challenges, Sensors 24 (2024) 5143.
[8] S. Bohlooli, et al., Electrochemical Determination of Human Growth Hormone (HGH) Utilizing A Pyrrole (Py) Molecularly Imprinted Polymer (MIP) On Screen-Printed Carbon Electrode (SPCE), Anal. Bioanal. Electrochem. 15 (2023) 410–427.
[9] S. Kia, S. Bahar and S. Bohlooli, A novel electrochemical sensor based on plastic antibodies for vitamin D3 detection in real samples, IEEE Sens. J. 19 (2019) 4752–4757.
[10] S. Bohlooli, et al., Development of molecularly imprinted polymer on ferric oxide nanoparticles modified electrode as electrochemical sensor for detection of human growth hormone, Monatsh. Chem. 153 (2022) 39–48.
[11] Y. Hua, et al., DNA-based biosensors for the biochemical analysis: A review, Biosensors 12 (2022) 183.
[12] B. Shen, et al., Advances in DNA walking nanomachine‐based biosensors, Interdiscip. Med. 2 (2024) e20230046.
[13] F. Teles and L. Fonseca, Trends in DNA biosensors, Talanta 77 (2008) 606–623.
[14] S. Kosara, R. Singh and D. Bhatia, Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives, Nanoscale Adv. 6 (2024) 386–401.
[15] M. Kowshik, Structural DNA nanotechnology and its biomedical applications, in Advances in Nano and Biochemistry, Elsevier (2023) pp. 561–585.
[16] Y. Zhang, et al., Programmable and multifunctional DNA‐based materials for biomedical applications, Adv. Mater. 30 (2018) 1703658.
[17] P. Damborský, J. Švitel and J. Katrlík, Optical biosensors, Essays Biochem. 60 (2016) 91–100.
[18] C. Chen and J. Wang, Optical biosensors: An exhaustive and comprehensive review, Analyst 145 (2020) 1605–1628.
[19] J. Stetefeld, S.A. McKenna and T.R. Patel, Dynamic light scattering: a practical guide and applications in biomedical sciences, Biophys. Rev. 8 (2016) 409–427.
[20] G. Lubin, et al., Photon correlations in spectroscopy and microscopy, ACS Photonics 9 (2022) 2891–2904.
[21] A. Singh, et al., Recent advances in electrochemical biosensors: Applications, challenges, and future scope, Biosensors 11 (2021) 336.
[22] R.E. Fishman, et al., Photon-emission-correlation spectroscopy as an analytical tool for solid-state quantum defects, PRX Quantum 4 (2023) 010202.
[23] F.-C. Chien and S.-J. Chen, A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes, Biosens. Bioelectron. 20 (2004) 633–642.
[24] A. Siabi-Garjan, et al., Highly sensitive silver-based localized surface plasmon resonance (LSPR) biosensor for microRNA-21 detection: discrete dipole approximation together with molecular polarizability method, Appl. Surf. Sci. 634 (2023) 157681.
[25] K.A. Meradi, et al., Optical biosensor based on enhanced surface plasmon resonance: theoretical optimization, Opt. Quantum Electron. 54 (2022) 124.
[26] Y.S. Wang, et al., Functional biointerfaces based on mixed zwitterionic self-assembled monolayers for biosensing applications, Langmuir 35 (2019) 1652–1661.
[27] S. Basak, A. Borah and B. Ramchiary, Surface plasmon resonance: a comprehensive review of principles, instrumentation, analytical procedures, and pharmaceutical applications, J. Prev. Diagn. Treat. Strateg. Med. 4 (2025) 93–103.
[28] F. Zezza, et al., Detection of Fusarium culmorum in wheat by a surface plasmon resonance-based DNA sensor, J. Microbiol. Methods 66 (2006) 529–537.
[29] M.M. GA, Polymerase chain reaction (PCR) and primers, Ekonomika i Sotsium 3–2 (2022) 208–211.
[30] T. Luo, et al., Research progress of nucleic acid detection technology for genetically modified maize, Int. J. Mol. Sci. 24 (2023) 12247.
[31] S.H. Park, Development of rapid detection methods and novel control measures for Salmonella in poultry (2013).
[32] C.M. Taylor, The molecular determination of the adhesion of Listeria monocytogenes to plant surfaces, PhD thesis, University of Manchester (2000).
[33] M. Hernández, T. Esteve and M. Pla, Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat, J. Agric. Food Chem. 53 (2005) 7003–7009.
[34] A. Siabi-Garjan, S. Kia and S. Mirzaee, Simulation of highly sensitive multi-core-satellite plasmonic structures for detection of gastric cancer agent microRNA-21 using modified discrete dipole approximation, Plasmonics 19 (2024) 2473–2481.
[35] J. Zuo, et al., Preparation and application of fluorescent carbon dots, J. Nanomater. 2015 (2015) 787862.
[36] Z. Barandiarán, J. Joos and L. Seijo, Luminescent materials, Springer Int. Publ. (2022).
[37] M.K. Patel, et al., A label-free photoluminescence genosensor using nanostructured magnesium oxide for cholera detection, Sci. Rep. 5 (2015) 17384.
[38] M. Zarei-Ghobadi, et al., A genosensor for detection of HTLV-I based on photoluminescence quenching of fluorescent carbon dots in presence of iron magnetic nanoparticle-capped Au, Sci. Rep. 8 (2018) 15593.
[39] S. Park, et al., Aptameric fluorescent biosensors for liver cancer diagnosis, Biosensors 13 (2023) 617.
[40] S.S. Mourad, M.A. Barary and A.F. El-Yazbi, Sensitive “release-on-demand” fluorescent genosensors for probing DNA damage induced by commonly used cardiovascular drugs: comparative study, Int. J. Biol. Macromol. 269 (2024) 131821.
[41] L. Fu, et al., Fluorescence‐based quantitative platform for ultrasensitive food allergen detection: from immunoassays to DNA sensors, Compr. Rev. Food Sci. Food Saf. 19 (2020) 3343–3364.
[42] B. Martín-Fernández, et al., Electrochemical genosensors in food safety assessment, Crit. Rev. Food Sci. Nutr. 57 (2017) 2758–2774.
[43] Y. Zhang, et al., DNA aptamer for use in a fluorescent assay for the shrimp allergen tropomyosin, Microchim. Acta 184 (2017) 633–639.
[44] Y. Ding, et al., Rapid and sensitive detection of ketamine in blood using novel fluorescence genosensor, Anal. Bioanal. Chem. 409 (2017) 7027–7034.
[45] R. Liu, et al., A sensitive and accurate fluorescent genosensor for Staphylococcus aureus detection, Sens. Actuators B Chem. 355 (2022) 131311.
[46] M. Srisa-Art, et al., Monitoring of real-time streptavidin–biotin binding kinetics using droplet microfluidics, Anal. Chem. 80 (2008) 7063–7067.
[47] Y.-T. Chen, et al., Review of integrated optical biosensors for point-of-care applications, Biosensors 10 (2020) 209.