Document Type : Full research article
Authors
1 Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University
2 دانش آموخته کارشناسی شیمی، گروه شیمی، دانشکده علوم پایه، دانشکده علوم پایه، دانشگاه آیت ا...بروجردی، بروجرد، ایران
Abstract
An environmentally friendly and safe method has been developed for synthesizing Azoarene and Azoxyarene derivatives from readily available nitrobenzene. This process utilizes a deep eutectic solvent (DES) composed of choline chloride (ChCl) and zinc chloride (ZnCl2), which functions as both the catalyst and reaction medium. The methodology is leveraging the dual role of the ChCl/ZnCl2 DES. Using this approach, various Azo and Azoxy compounds have been successfully synthesized starting from nitrobenzene derivatives. The reaction proceeded efficiently under mild conditions (3 h at 60 °C). Notably, the system exhibited strong selectivity toward Azoxy products, which were obtained in high yields of 73-78%. In contrast, Azo derivatives were formed only in moderate yield (42%), highlighting the selective nature of the ChCl/ZnCl2 DES catalytic medium. This method not only simplifies the synthesis but also aligns with the principles of green chemistry, offering an efficient and sustainable approach to producing Azoarene and Azoxyarene derivatives.
Keywords
- Y. Cai, and Y.M. Zhou, Reduction of aromatic nitro compounds to azoxy compounds with sodium borohydride. Adv. Mater. Res. 1033 (2014) 18-21.
- Benkhaya, S. Mrabet, A. and Elharfi, Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6 (2020) e03271.
- G. Cai, C. Empel, W.Z. Yao, R.M. Koenigs, and J. Xuan, Azoxy compounds—from synthesis to reagents for azoxy group transfer reactions. Angew. Chem. 135 (2023) e202312031.
- Tan, X, Liu, J. Su, Y. Wang, X. Gu, D. Yang, E.R. Waclawik, H. Zhu, and Z. Zheng, One-pot selective synthesis of azoxy compounds and imines via the photoredox reaction of nitroaromatic compounds and amines in water. Sci. Rep. 9 (2019) 1280.
- Sinditskii, A. Burzhava, and A. Sheremetev, Macrocyclic tetra (azo-) and tetra (azoxyfurazan) s: Comparative study of decomposition and combustion with linear analogs. Energ. Mater. Front. 2 (2021) 87-95.
- Diab, A. El-Bindary, A. El-Sonbati, and O. Salem, Supramolecular structure and substituents effect on the spectral studies of oxovanadium (IV) azodyes complexes. J. Mol. Struct. 1018 (2012) 176-184.
- T. Newbold, Oxidation and synthetic uses of hydrazo, azo and azoxy compounds. Hydrazo, 1 (1975) 541-597.
- Patel, and T. Rosenau T, Synthesis and analytical characterization of all N–N-coupled, dimeric oxidation products of α-tocopheramine: hydrazo-, azo-, and azoxy-tocopherol. Monatsh. Chem. 152 (2021) 1231-1239.
- Shukla, R.K. Singha, T. Sasaki, S. Adak, S. Bhandari, V. Prasad, A. Bordoloi, and R. Bal, Room temperature selective reduction of nitroarenes to azoxy compounds over Ni-TiO2 catalyst. Mol. Catal. 490 (2020)110943.
- Ferlin, M. Cappelletti, R. Vivani, M. Pica, O. Piermatti, and L. Vaccaro, Au@zirconium-phosphonate nanoparticles as an effective catalytic system for the chemoselective and switchable reduction of nitroarenes. Green Chem. 21 (2019) 614-626.
- Chong, C. Liu, Y. Huang, C. Huang, and B. Zhang, Potential-tuned selective electrosynthesis of azoxy-, azo-and amino-aromatics over a CoP nanosheet cathode. Natl. Sci. Rev. 7 (2020) 285-295. ‘
- Yan, X. Xie, Q. Song, F. Ma, X. Sui, Z. Huo, and M. Ma, Tandem selective reduction of nitroarenes catalyzed by palladium nanoclusters. Green Chem. 22 (2020) 1301-1307.
- Dai, Q. Wei, T. Duong, and Y. Sun, Selective transfer coupling of nitrobenzene to azoxybenzene on rh nanoparticle catalyst promoted by photoexcited hot electrons. Chem. Nano Mat. 5 (2019) 1000-1007.
- N. Pahalagedara, L.R. Pahalagedara, J. He, R. Miao, B. Gottlieb, D. Rathnayake, and S.L. Suib, Room temperature selective reduction of nitrobenzene to azoxybenzene over magnetically separable urchin-like Ni/Graphene nanocomposites. J. Catal. 336 (2016) 41-48.
- Singh, D. Mandelli, and P.P. Pescarmona, Efficient and selective oxidation of aromatic amines to azoxy derivatives over aluminium and gallium oxide catalysts with nanorod morphology. Chem. Cat. Chem. 12 (2020) 593-601.
- Yu, W. Ding, P. Ge, S. Wang, and J. Wang, Oxidative coupling of aromatic amines and nitrosoarenes: Iodine‐mediated formation of unsymmetrical aromatic azoxy compounds. Adv. Synth. Catal. 360 (2016) 3150-3156.
- Rezaeifard, M. Jafarpour, S. Rayati, and R. Shariati, The catalytic performance of Mn-tetraarylporphyrins in the highly selective oxidation of primary aromatic amines to azo compounds by Bu4NHSO5. Dyes Pigm. 80 (2009) 80-85.
- B. Waghmode, S.M. Sabne, and S. Sivasanker, Liquid phase oxidation of amines to azoxy compounds over ETS-10 molecular sieves. Green Chem. 3 (2001) 285-288.
- Liu, S. Ye, H.Q. Li, Y.M. Liu, Y. Cao, and K.N. Fan KN, Mild, selective and switchable transfer reduction of nitroarenes catalyzed by supported gold nanoparticles. Catal Sci. Technol. 3 (2013) 3200-3206.
- Belattar, S. Benayache, and F. Benayache, Diphenyl diselenide–catalyzed reductive coupling of nitroarenes to aromatic azo and azoxy compounds with sodium borohydride in alkaline ethanol. Curr. Org. Synth. 15 (2018) 1182-1190.
- L. Di Gioia, A. Leggio, I.F. Guarino, V. Leotta, E. Romio, and A. Liguori, A simple synthesis of anilines by LiAlH4/TiCl4 reduction of aromatic nitro compounds. Tetrahedron lett. 56 (2015) 5341-5344.
- Welton, Solvents and sustainable chemistry. Proc. R. Soc. A 471 (2015) 20150502.
- Hussain, I. Ghafari, S. Sattar, M. Muneeb, A. Hasan, and B. Deepanraj, Eco-friendly catalysts revolutionizing energy and environmental applications: An overview. Top. Catal. 68 (2024) 487-509.
- Jiang, J. Li, K.J. Shah, and Z. You Z, Perspective Chapter: Implementing green chemistry principles for pollution control to achieve environmental sustainability–A Review. Green Chemi. Environ. Sustain. Prev. Assur. Sustain. Approach (2023).
- Chen, Y. Zhou, H. Fang, X. Peng, and L. Jiang, Progress and challenges in energy storage and utilization via ammonia. Surf. Sci. Technol. 1 (2023) 13.
- Miceli, P. Frontera, A. Macario, and A. Malara, Recovery/reuse of heterogeneous supported spent catalysts. Catalysts 11 (2021) 591.
- Panahimehr, S. Asghari, M. Hosseini, A. Mojaddami, Pd/ZnMn₂O₄/chitosan nanobiocatalyst: A sustainable solution for sunlight-enhanced photocatalytic degradation of Congo red dye. J. Mol. Struct. 1347 (2025) 143339.
- M. Sadughi, M. Hosseini, and Karem Gallardo, Next-generation nanophotocatalyst for ultra-efficient and sustainable azithromycin decontamination: A breakthrough strategy for visible-light-driven pharmaceutical waste treatment. Top. Catal. (2025).
- Panahimehr, M. Hosseini, A. Mojaddami, and S. Karamipour, Eco-friendly synthesis of magnetic Pd/NiFe2O4/chitosan nanobiocatalyst for enhanced degradation of Congo red dye under sunlight irradiation. Results Chem. 15 (2025) 102300.
- Hosseini, Visible-light-assisted decontamination of sertraline in water using a Co3O4/g-C3N4 nanocomposite photocatalyst. Environ. Sci. Pollut. Res. 32 (2025) 20441-20460.
- Hosseini, M. Panahimehr, and S.M. Khoshfetrat, Solar-driven clopidogrel degradation with europium-enhanced ZnO nanocatalyst. Int. J. Environ. Sci. Technol. 22 (2025) 9915-9932.
- P. Zhang, X.Y. Wang, K. Yuan, W. Zhu, T. Zhang, Y.H. Wang, J. Ke, X.Y. Zheng, C.H. Yan, and Y.W. Zhang, Free-standing iridium and rhodium-based hierarchically-coiled ultrathin nanosheets for highly selective reduction of nitrobenzene to azoxybenzene under ambient conditions. Nanoscale 8 (2016) 15744-15752.
- Chen, Y. Qiu, X. Wu, Y. Ni, L. Shen, J. Wu, and S. Jiang, Highly selective reduction of nitrobenzenes to azoxybenzenes with a copper catalyst. Tetrahedron Lett. 59 (2018)1382-1384.
- Wang, X. Yu, C. Shi, D. Lin, J. Li, H. Jin, X. Chen, and S. Wang, Iron and nitrogen Co‐doped mesoporous carbon‐based heterogeneous catalysts for selective reduction of nitroarenes. Adv. Synth. Catal. 361 (2019) 3525-3531.
- Hou, Y. Fujiwara, and H. Taniguchi, Lanthanides in organic synthesis. Samarium metal promoted selective formation of azoxy compounds. J. Org. Chem. 53 (1988) 3118-3120.
- S. Silvester, A.J. Wain, L. Aldous, C. Hardacre, and R.G. Compton, Electrochemical reduction of nitrobenzene and 4-nitrophenol in the room temperature ionic liquid [C4dmim][(NTf)2]. J. Electroanal. Chem. 596 (2006) 131-140.
- Wirtanen, E. Rodrigo, and S.R. Waldvogel, Recent advances in the electrochemical reduction of substrates involving N−O bonds. Adv. Synth. Catal. 362 (2020) 2088-2101.
- T. Jan, M. Azam, K. Siddiqui, A. Ali, I. Choi, and Q.M.R. Haq, Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16 (2015) 29592-29630.
- Schotten, T.P. Nichollas, R.A. Bourne, N. Kapur, B.N. Nguyen, and C.E. Willans, Making electrochemistry easily accessible to the synthetic chemist. Green Chem. 22 (2020) 3358-3375.
- Webling, and H.J. Schafer, Cathodic hydrodimerization of nitroolefins. Beilstein J. Org. Chem. 11 (2015) 1163-1174.
- H. Jiang, B.L. Wu, and C.S. Cha, Electrosynthesis of p-methoxybenzaldehyde on graphite/Nafion membrane composite electrodes. Electrochim. Acta 43 (1998) 2549-2552.
- I. Kaya, A. Cetinkaya, and S.A. Ozkan, Green analytical chemistry approaches on environmental analysis. Trends Environ. Anal. Chem. 33 (2022) e00157.
- Behera, and A. Mishra, Green chemistry and catalysis: Current challenges and future perspectives. Encyclopedia of green materials. Springer, Singapore (2023).
- Ratti, Industrial applications of green chemistry: Status, Challenges and Prospects. SN Appl. Sci. 2 (2020) 263.
- S. Alvarez, M.A. Llongo, A. RodrigUuez, F.J. Deive, The role of deep eutectic solvents in catalysis. A vision on their contribution to homogeneous, heterogeneous and electrocatalytic processes. J. Ind. Eng. Chem. 132 (2024) 36-49.
- Khandelwal, Y.K. Tailor, and M. Kumar, Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq. 215 (2016) 345-386.
- Svigelj, N. Dossi, C. Grazioli, and R. Toniolo, Deep eutectic solvents (DESs) and their application in biosensor development. Sensors 21 (2021) 4263.
- E. Hooshmand, S. Kumar, I. Bahadur, T. Singh, and R.S. Varma, Deep eutectic solvents as reusable catalysts and promoter for the greener syntheses of small molecules: Recent advances. J. Mol. Liq. 371 (2023) 121013.
- E. Ünlu, A. Arikaya, and S Takac, Use of deep eutectic solvents as catalyst: A mini-review. Green Process Synth. 8 (2019) 355-372.
- P. Ijardar, V. Singh, and R.L. Gardas, Revisiting the physicochemical properties and applications of deep eutectic solvents. Molecules 27 (2022) 1368.
- El-Baraka, G. Hamdoun, N. El-Brahmi, and S. El-Kazzouli, Unlocking the potential of deep eutectic solvents for C-H activation and cross-coupling reactions: A review. Molecules 28 (2023) 4651.
- Hosseini, Application of a new synthesized ionic liquid based on pyrrolidinium for microextraction of trace amounts of Cr (VI) ions in real water and wastewater samples. J. Water Chem. Technol. 45 (2023) 256-269.
- Hosseini, S.M. Khoshfetrat, M. Panahimehr, and A. Rezaei, ISFME extraction of As species from some real water samples using an imidazolium-based task-specific ionic liquid (TSIL): Synthesis and characterization. Sep. Sci. Technol. 59 (2024) 580-591.
- Hosseini, and K. Gallardo, A novel system based on a task-specific pyrrolinium-based ionic liquid and homogeneous in situ solvent formation microextraction for the determination of sertraline in real water and urine samples. New J. Chem. 49 (2025) 13772.
- K.U. Ling, and K. Hadinoto, Deep eutectic solvent as green solvent in extraction of biological macromolecules: A review. Int. J. Mol. Sci. 23 (2022) 3381.
- L. Smith, A.P. Abbott, and K.S. Ryder, Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114 (2014)11060-11082.
- Prabhune, and R. Dey, Green and sustainable solvents of the future: Deep eutectic solvents. J. Mol. Liq. 379: (2023) 121676.
- Wang, S. Zhang, Z. Ma, and L. Yan, Deep eutectic solvents eutectogels: progress and challenges. Green Chem. Eng. 2 (2021) 359-367.
- S. Chalaki, N. Azizi, Z. Mirjafary, and H. Saeidian, Green and rapid oxidation of aldehydes using a catalyticapplications of deep uutectic solvent. J. Saudi. Chem. Soc. 28 (2024) 101915.
- Mandal, R. Narvariya, S.L. Sunar, I. Paul, A. Jain, and T.K. Panda, Synthesis of α-aminophosphorous derivatives using a deep eutectic solvent (DES) in a dual role. Green Chem. 25 (2023) 8266-8272.
- Liu, P. Concepcion, and A. Corma, Modulating the catalytic behavior of non-noble metal nanoparticles by inter-particle interaction for chemoselective hydrogenation of nitroarenes into corresponding azoxy or azo compounds. J. Catal. 369 (2019) 312-323.
- Srilakshmi, H. Vijay-Kumar, K. Praveena, C. Shivakumara, and M. Muralidhar Nayyak, A highly efficient iron doped BaTiO3 nanocatalyst for the catalytic reduction of nitrobenzene to azoxybenzene. RSC Adv. 4 (2014) 18881-18884.
- Zheng, J. Zhao, H. Liu, J. Liu, A. Bo, and H. Zhu, Painting anatase (TiO2) nanocrystals on long nanofibers to prepare photocatalysts with large active surface for dye degradation and prganic synthesis. Chem. Cat. Chem. 5 (2013) 2382-2388.