In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Chemistry, Payame Noor University, Tehran 19395‑4697, Iran

2 Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran

3 aDepartment of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran

10.30473/ijac.2025.76680.1332

Abstract

In this study, a carbon ceramic electrode was fabricated and subsequently modified by manganese dioxide/multiwalled carbon nanotubes composite (MnO2/MWCNTs). MWCNTs were hybridized with Manganese dioxide to enhance their electrocatalytic properties. The resulting nanocomposite was evaluated for its efficacy in catalyzing ethanol oxidation. Characterization of the catalyst was performed using X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy. Electrochemical properties were studied using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. The results indicate a linear range from 0.02 to 0.3 mM with a detection limit of 6.2 μM and a diffusion coefficient of 5.24 × 10-7cm2s-1 for ethanol. The high surface area and conductivity of MWCNTs, hybridized with the catalytic activity of MnO₂, demonstrate the potential of the as-prepared nanocomposite for high performance fuel cell applications.

Keywords

] Manochio, C., Andrade, B. R., Rodriguez, R. P., & Moraes, B. S. (2017). Ethanol from biomass: A comparative overview. Renewable and Sustainable Energy Reviews80, 743-755.
[2] Wyman, C. E. (2018). Ethanol production from lignocellulosic biomass: overview. Handbook on Bioethanol, 1-18.
[3] Chandel, A. K., Albarelli, J. Q., Santos, D. T., Chundawat, S. P., Puri, M., & Meireles, M. A. A. (2019). Comparative analysis of key technologies for cellulosic ethanol production from Brazilian sugarcane bagasse at a commercial scale. Biofuels, bioproducts and biorefining13(4), 994-1014. https://doi.org/10.1002/bbb.1990
[4] Guo, Y., Liu, G., Ning, Y., Li, X., Hu, S., Zhao, J., & Qu, Y. (2022). Production of cellulosic ethanol and value-added products from corn fiber. Bioresources and Bioprocessing9(1), 81.
https://doi.org/10.1186/s40643-022-00573-9
[5] Elsaid, K., Abdelfatah, S., Elabsir, A. M. A., Hassiba, R. J., Ghouri, Z. K., & Vechot, L. (2021). Direct alcohol fuel cells: Assessment of the fuel's safety and health aspects. International Journal of Hydrogen Energy46(59), 30658-30668. https://doi.org/10.1016/j.ijhydene.2020.12.009
[6] Matheus, C. R., & Sousa-Aguiar, E. F. (2024). Main catalytic challenges in ethanol chemistry: A review. Catalysis Reviews66(1), 174-213. https://doi.org/10.1080/01614940.2022.2054554
[7] Altarawneh, R. M. (2021). Overview on the vital step toward addressing platinum catalyst poisoning mechanisms in acid media of direct ethanol fuel cells (DEFCs). Energy & Fuels35(15), 11594-11612. https://doi.org/10.1021/acs.energyfuels.1c00453
[8] Reddy, L. E., Gollapudi, D., Jain, G. M., Kolluru, S., & Ramesh, G. V. (2023). Recent progress in the development of Platinum-based electrocatalysts for the oxidation of ethanol in fuel cells. Materials Today: Proceedings92, 636-641. https://doi.org/10.1016/j.matpr.2023.04.135
[9] Alothman, Z. A., Bukhari, N., Wabaidur, S. M., & Haider, S. (2010). Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode. Sensors and Actuators B: Chemical146(1), 314-320.
[10] Wu, F. H., Zhao, G. C., & Wei, X. W. (2002). Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode. Electrochemistry Communications4(9), 690-694. https://doi.org/10.1016/S1388-2481(02)00435-6
[11] Zhao, G. C., Zhang, L., Wei, X. W., & Yang, Z. S. (2003). Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis. Electrochemistry Communications5(9), 825-829. https://doi.org/10.1016/j.elecom.2003.07.006
[12] Saboor, F. H., & Ataei, A. (2024). Decoration of metal nanoparticles and metal oxide nanoparticles on carbon nanotubes. Advanced Journal of Chemistry, Section A7(2), 122-145.
DOI: 10.48309/ajca.2024.416693.1420
[13] Yang, S. Y., Vecitis, C. D., & Park, H. (2019). Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides. Environmental Science and Pollution Research26(2), 1036-1043. https://doi.org/10.1007/s11356-017-8495-6
[14] Jiang, L. C., & Zhang, W. D. (2010). A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosensors and Bioelectronics25(6), 1402-1407. https://doi.org/10.1016/j.bios.2009.10.038
[15] Fang, B., Zhang, C., Zhang, W., & Wang, G. (2009). A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode. Electrochimica Acta55(1), 178-182. https://doi.org/10.1016/j.electacta.2009.08.036
[16] Liu, Z., Wang, J., Xie, D., & Chen, G. (2008). Polyaniline‐coated Fe3O4 nanoparticle–carbon‐nanotube composite and its application in electrochemical biosensing. Small4(4), 462-466.
[17] Wang, Y., Hu, G., Zheng, D., Dong, J., & Wang, J. (2023). High-capacitance manganese dioxide oxide/carbon nanotube/carbon felt as a bioanode for enhanced energy output in microbial fuel cells. Coatings13(6), 1043.  https://doi.org/10.3390/coatings13061043
[18] Amade, R., Vila-Costa, M., Hussain, S., Casamayor, E. O., & Bertran, E. (2015). Vertically aligned carbon nanotubes coated with manganese dioxide as cathode material for microbial fuel cells. Journal of Materials Science50(3), 1214-1220.
https://doi.org/10.1007/s10853-014-8677-2
[19] Xu, W., Xue, S., Yi, H., Jing, P., Chai, Y., & Yuan, R. (2015). A sensitive electrochemical aptasensor based on the co-catalysis of hemin/G-quadruplex, platinum nanoparticles and flower-like MnO2 nanosphere functionalized multi-walled carbon nanotubes. Chemical Communications51(8), 1472-1474. https://doi.org/10.1039/C4CC08860C
[20] Hameed, R. A., Fetohi, A. E., Amin, R. S., & El-Khatib, K. M. (2015). Promotion effect of manganese oxide on the electrocatalytic activity of Pt/C for methanol oxidation in acid medium. Applied Surface Science359, 651-663. https://doi.org/10.1016/j.apsusc.2015.10.130
[21] Panrod, C., Themsirimongkon, S., Waenkaew, P., Inceesungvorn, B., Juntrapirom, S., & Saipanya, S. (2018). Effect of noble metal species and compositions on manganese dioxide-modified carbon nanotubes for enhancement of alcohol oxidation. International Journal of Hydrogen Energy43(35), 16866-16880. https://doi.org/10.1016/j.ijhydene.2017.12.145
[22] Nouralishahi, A., Khodadadi, A. A., Mortazavi, Y., Rashidi, A., & Choolaei, M. (2014). Enhanced methanol electro-oxidation activity of Pt/MWCNTs electro-catalyst using manganese
oxide deposited on MWCNTs. Electrochimica Acta147, 192-200. https://doi.org/10.1016/j.electacta.2014.09.113
[23] Tsionsky, M., Gun, G., Glezer, V., & Lev, O. (1994). Sol-gel-derived ceramic-carbon composite electrodes: introduction and scope of applications. Analytical Chemistry66(10), 1747-1753. https://doi.org/10.1021/ac00082a024
[24] Tan, X., Li, M., Cai, P., Luo, L., & Zou, X. (2005). An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Analytical Biochemistry337(1), 111-120. https://doi.org/10.1016/j.ab.2004.10.040
[25] Wang, X., Chu, J., Yan, H. J., & Zhang, H. K. (2022). Synthesis and characterization of MnO2/Eggplant carbon composite for enhanced supercapacitors. Heliyon8(9). https://doi.org/10.1016/j.heliyon.2022.e10631
      [26] Boamah, R., Agyei-Tuffour, B., Dodoo-Arhin, D., Nyankson, E., Brobbey, K. J., Obada, D., & Mohammed, L. (2023). Activated cashew carbon-manganese oxide based electrodes for supercapacitor applications. Scientific African20, e01647. https://doi.org/10.1016/j.sciaf.2023.e01647
[27] Li, Y., Wei, X., Han, S., Chen, L., & Shi, J. (2021). MnO2 electrocatalysts coordinating alcohol oxidation for ultra‐durable hydrogen and chemical productions in acidic solutions. Angewandte Chemie133(39), 21634-21642. https://doi.org/10.1002/ange.202107510
[28] Bard, A. J., Faulkner, L. R., & White, H. S. (2022). Electrochemical methods: fundamentals and applications. John Wiley & Sons.