In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 PhD Student, Dept. of Chemical Engineering, Faculty of Engineering,University of Mohaghegh Ardabili, Ardabil, Iran

3 Expert in Charge of Chemical and Device Laboratories, Shiraz Water and Wastewater Company, Shiraz, Iran

4 Quality Monitoring and Control Director, Shiraz Water and Wastewater Company, Shiraz, Iran

10.30473/ijac.2025.76092.1327

Abstract

In water chlorination for removing pathogens, trihalomethanes (THMs) are among the significant carcinogenic by-products of drinking water chlorination. The conventional measurement means for these compounds is a GC device with an ECD detector (GC-ECD) or GC/MS. A GC-ECD or a GC/MS is utilized for analyzing THMs at the microgram per liter scale. Purchasing an ECD detector is not easy or cost-effective. This article introduces a new concentration method using the Head Space technique in a GC-FID device for measuring the concentration of THMs. In this method, four compounds, chloroform (CHCl3), di-bromochloromethane (CHClBr2), bromodichloromethane (CHCl2Br) and bromoform (CHBr3), are plotted on a 5-point calibration chart after being measured on a microgram per liter scale. This method, designed in a laboratory, can be used to measure concentrations and analyze data in the laboratories of water and wastewater, environment, petroleum and petrochemistry, etc. High accuracy of the method (µg/L) is the main feature of this method. Here, the design method and advantages of this method are presented with diagrams and tables.

Keywords

 [1] K. Shayesteh, P. Abbasi, V. Vahidfard and M. Shahedi Asl, Simultaneous removal of nickel and cadmium during the cold purification of zinc sulfate solution, Arab. J. Sci. Eng. 45(2) (2020) 587–598. DOI: 10.1007/s13369-019-04320-9.
[2] G.K. Imanzadeh, M.R. Zamanloo, H. Eskandari and K. Shayesteh, A new ring bromination method for aromatic compounds under solvent-free conditions with NBS/Al2O3, J. Chem. Res. 2006(3) (2006) 151–153. DOI: 10.3184/030823406776330657.
[3] K. Shayesteh, J. Moghaddas, M. Haghighi and H. Eskandari, Development of a monitoring method for oxidative coupling reaction of 2-naphthol in solid state, Asian J. Chem. 22(3) (2010) 2106.
[4] Z. Emamgholiloo, K. Shayesteh and F. Zahmati, Synthesis of WL. nZVI/GAC adsorbent green for chromium removal from aqueous solutions (Characterization, kinetics, isotherms, and thermodynamics), Chem. Eng. Sci. 297 (2024) 120209. DOI: 10.1016/j.ces.2024.120209.
[5] K. Shayesteh, M. Khojasteh, N. Shayesteh, M.J. Khani, F. Zahmati and V. Vahidfard, The effect of mineral hot water springs on the quality of the river based on toxicity indicators (case study: the effect of Ghaynarjeh Nir hot spring on the Balkhlichai river), J. Res. Environ. Health. 9(2) (2023) 146–159. DOI: 10.22038/jreh.2023.66395.1524.
[6] M. Abdollahpour and K. Shayesteh, Application of response surface methodology (RSM) for modeling and optimizing coagulation process for the removal of bromide ions, J. Water Wastewater. 27(5) (2016) 64–72.
 [7] L.A. Wallace, Total exposure assessment methodology (TEAM) study: Summary and analysis, (EPA/600/6-87/002a), Vol. 1. U.S. Environmental Protection Agency, Washington, DC (1987a), NTIS # PB 88-100060, 38 54.https://d1wqtxts1xzle7. cloudfront.net/67363945/2000UC5T-libre.
[8] L.A. Wallace, Human exposure and body burden for chloroform and other trihalomethanes, Crit. Rev. Environ. Sci. Technol. 27 (1997b) 113–194. DOI: 10.1080/10643389.1997.10737059.
[9] U.S. Environmental Protection Agency (USEPA), National primary drinking water regulations: stage 2 disinfectants and disinfection byproducts rule: final rule, Fed. Regist. 71(2) (2006) 388–493. https://www.govinfo.gov/content/pkg/FR-2006-01-04/pdf/06-3.
[10] K.L.A. de Oliveira, G.M. Bousada, C.I. Cerceau, A.F. de Oliveira and R.P. Lopes M., Efficient THM quantification in drinking water for minimally-equipped water treatment plants labs, Spectrochim. Acta A Mol. Biomol. Spectrosc. 321 (2024) 124739. DOI: 10.1016/j.saa.2024.124739
[11] A. Mohammadpour, Z. Emadi, E. Berizi and A. Kazemi, THMs in chlorinated drinking water: seasonal variations and health risk assessment in southern Iran, Groundw. Sustain. Dev. 27 (2024) 101342. DOI: 10.1016/j.gsd.2024.101342.
[12] A. Torabian, An evaluation of THMs in drinking water and a method of its removal, Iran. J. Public Health 27(1–2) (1998) 35–42. DOI:10.1093/chromsci/30.12.478.
 [13] A.A. Babaei, L. Atari, M. Ahmadi Moghadam, N. Alavi & K. Ahmadi Angali, Determination of trihalomethanes concentration in Ahvaz water distribution network in 2011, Jentashapir Journal of Cell & Molecular Biology, 3(4) (2012): e94052. http://journals.ajums.ac.ir/jentashapir.
 [14] N. Jafari, A. Behnami, F. Ghayurd, A. Soleimani, A. Mohammadi, M. Mojtaba Pourakbar and A. Abdolahnejad, Analysis of THM formation potential in drinking water networks: effects of network age, health risks, and seasonal variations in northwest Iran, Heliyon 10(14) (2024) e34563. DOI: 10.1016/j.heliyon.2024.e34563.
[15] L.R. Kalankesh, M.A. Zazouli, H. Susanto and E. Babanezhad, Variability of TOC and DBPs (THMs and HAA5) in drinking water during drought season: North Iran case study, Environ. Technol. 42(1) (2021) 100–113. DOI: 10.1080/09593330.2019.1621952.
[16] K.M.S. Kaarsholm, A. Kokkoli, E. Keliri, P.D. Mines, M.G. Antoniou, M.H. Jakobsen and H.R. Andersen, Quantification of hypochlorite in water using the nutritional food additive pyridoxamine, Water 13(24) (2021) 3616. DOI: 10.5194/jsss-6-381-2017.
 [17] J.E. Lovelock and S.R. Lipsky, Electron affinity spectroscopy – a new method for identifying functional groups in compounds separated by gas chromatography, J. Am. Chem. Soc. 82 (1960) 431–433.DOI: 10.1021/ja01487a045
 [18] R.J. Maggs, P.L. Joynes, A.J. Davies and J.E. Lovelock, Electron capture detector: new mode of operation, Anal. Chem. 43 (1971) 1966–1971.https://doi.org/10.1021 /ac 60308 a014.
[19] W.E. Wentworth, E.D. D’Sa, H. Cai and S. Stearns, Environmental applications of the pulsed-discharge electron capture detector, J. Chromatogr. Sci. 30 (1992) 478–485.DOI: 10.1093/chromsci/30.12.478.
[20] E. Bunert, A.T. Kirk, J. Oermann and S. Zimmermann, Electron capture detector based on a non-radioactive electron source: operating parameters vs. analytical performance, J. Sens. Sens. Syst. 6 (2017) 381–387. DOI: 10.5194/jsss-6-381-2017.
[21] A. Sandoval-González, N.A. López-García, E. Figueroa-Hernandez and J. Cárdenas-Mijangos, Advances in analytical methods for the monitoring of chemical pollutants in industrial effluent water. In M.P. Shah (ed.), Microbial Remediation of Hazardous Chemicals from Water & Wastewater Treatment Plant, Springer, Cham (2024) 20–49.https://doi.org/10.1007/978-3-031-62898-6_17.
[22] D. Svetlizky, H. Kazimierczak, B. Ovadia, A. Sharoni and N. Eliaz, Electrochemical processing and thermal properties of functional core/multi-shell ZnAl/Ni/NiP microparticles, Materials 14 (2021) 834. DOI: 10.3390/ma14040834.
[23]A.J. Bard, L.R. Faulkner and H.S. White, Electrochemical Methods: Fundamentals and Applications, 3 rd Edition, Wiley, Transition Metal Chemistry 48(6) (2023).DOI:10.1007/s 11243-023-00555-6.
[24] D.K. Singh, M. Pradhan and A. Materny, Modern Techniques of Spectroscopy: Basics, Instrumentation, and Applications, Springer, Singapore (2021) 30–110. DOI: 10.1007 /978-981-33-6084-6.
[25] M. Passos and M.L. Saraiva, Detection in UV–visible spectrophotometry: detectors, detection systems, and detection strategies, Measure. 135 (2019) 896–904. DOI: 10.1016/j.measurement.2018.11.066.
 [26] J. Mátyási, G. Nyerges and J. Balla, Increasing flame ionization detector response by silylation: the effective carbon number of carboxylic acids, Period. Polytech. Chem. Eng. 67(4) (2023) 565–572. https://doi.org/ 10.3311/PPch.22827.
[27] K. Wang, S. Kang, F. Li, X. Wang, Y. Xiao, J. Wang and H. Xu, Relationship between fruit density and physicochemical properties and bioactive composition of mulberry at harvest, J. Food Compos. Anal. 106 (2022) 104322. DOI: 10.1016/j.jfca.2022.104322.
 [28] G. Ntsomboh-Ntsefong, G.F. Ngando-Ebongue, J.E. Maho-Yalen, E. Youmbi, J.M. Bell, H. Ngalle-Bille, K. Tabi-Mbi, B.C. Likeng-Li-Ngue and A. Nsimi-Mva, GC-FID method development and validation parameters for analysis of palm oil fatty acids composition, J. Res. Plant Sci. 2(3) (2014) 53–66.DOI: 10.12691/plant-2-3-2.
[29] S. Rasheed, I. Hashmi, Q. Zhou, et al., Central composite rotatable design for optimization of THM extraction and detection through gas chromatography: a case study, Int. J. Environ. Sci. Technol. 20 (2023) 1185–1198. DOI: 10.1007/s13762-022-04522-2.
[30] J.P. Swinley and P. De Coning, A Practical Guide to Gas Analysis by Gas Chromatography. Elsevier (2023) 80–98. https://search.library.uq.edu.au/permalink/61UQ_INST/l14uft/alma991014094127703131.
[31] Y. Zhu, T. Ariga, K. Nakano and Y. Shikamori, Trends and advances in inductively coupled plasma tandem quadruple mass spectrometry (ICP-QMS/QMS) with reaction cell, At. Spectrosc. 42 (2021) 299–309. DOI: 10.46770/AS. 2021.42.299.
 [32] G.A. Reineccius and M.C. Qian, Gas chromatography. In B.P. Ismail and S.S. Nielsen (eds), Nielsen’s Food Analysis. Springer, Cham (2024).https://doi.org/ 10.1007/978-3-031-50643-7_14.
[33] A. Bidari, M.R. Ganjali, P. Norouzi, M.R. Milani Hosseini and Y. Assadi, Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid–liquid microextraction, Food Chem. 126 (2011) 1840–1844. DOI: 10.1016/j. foodchem.2010.11.142.
[34] A. Cristián, C.R. Ferretti, M. Apesteguía and J.I. di Cosimo, Development and validation of a gas chromatography method for the simultaneous determination of multicomponents during monoglyceride synthesis by glycerolysis of methyl oleate, J. Argent. Chem. Soc. 98 (2011) 16–28. https:// www.aqa.org.ar/images/anales/pdf98/98art3.pdf.
 [35] N.N. Godswill, N.E.Georges Frank,  M.Y.Josian  Edson,  Y. E.,  B.  J.  Martin, N.B.  Hermine, T.M. Kingsley, L.L.N.  Benoit Constant, and N.M. Armand,GC-FIDmethod development and  validationparameters  for  analysis of palm oil (Elaeis guineensis Jacq.) fatty acids composition, Research in Plant Sciences 2(3) (2014): 53-66. doi: 10.12691/plant-2-3-2. DOI: 10.12691/plant-2-3-2.