[1] Rathod, A. L., & Garg, R. K. (2017). Chlorpyrifos poisoning and its implications in human fatal cases: A forensic perspective with reference to Indian scenario. Journal of forensic and legal medicine, 47, 29-34.
[2] Aroniadou-Anderjaska, V., Figueiredo, T. H., de Araujo Furtado, M., Pidoplichko, V. I., & Braga, M. F. (2023). Mechanisms of organophosphate toxicity and the role of acetylcholinesterase inhibition. Toxics, 11(10), 866.
[3] Pope, C., Karanth, S., & Liu, J. (2005). Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environmental toxicology and pharmacology, 19(3), 433-446.
[4] López-Merino, E., Cuartero, M. I., Esteban, J. A., & Briz, V. (2023). Perinatal exposure to pesticides alters synaptic plasticity signaling and induces behavioral deficits associated with neurodevelopmental disorders. Cell Biology and Toxicology, 39(5), 2089-2111.
[5] Berg, E. L., Ching, T. M., Bruun, D. A., Rivera, J. K., Careaga, M., Ellegood, J., ... & Silverman, J. L. (2020). Translational outcomes relevant to neurodevelopmental disorders following early life exposure of rats to chlorpyrifos. Journal of neurodevelopmental disorders, 12(1), 40.
[6] Akhter, S., Naik, V. K., Naladi, B. J., Rathore, A., Yadav, P., & Lal, D. (2024). The Ecological Impact of Pesticides on Non-Target Organisms in Agricultural Ecosystems. Adv. Bioresearch, 15, 322-334.
[7] Ige, O. E., Aliu, F. P., Omole, A. E., & Alabi, O. O. (2025). Ecotoxicological Impacts of Pesticide. In The Interplay of Pesticides and Climate Change: Environmental Dynamics and Challenges (pp. 231-252). Cham: Springer Nature Switzerland.
[8] Nandhini, A. R., Harshiny, M., & Gummadi, S. N. (2021). Chlorpyrifos in environment and food: a critical review of detection methods and degradation pathways. Environmental Science: Processes & Impacts, 23(9), 1255-1277.
[9] Arain, M., Brohi, K. M., Channa, A., Brohi, R. O. Z., Mushtaque, S., Kumar, K., & Samuee, A. (2018). Analysis of chlorpyrifos pesticide residues in surface water, ground water and vegetables through gas chromatography. Journal of International Environmental Application and Science, 13(3), 167-173.
[10] Varo, I., Serrano, R., Pitarch, E., Amat, F., Lopez, F. J., & Navarro, J. C. (2002). Bioaccumulation of chlorpyrifos through an experimental food chain: study of protein HSP70 as biomarker of sublethal stress in fish. Archives of environmental contamination and toxicology, 42(2), 229-235.
[11] Li, R., He, L., Zhou, T., Ji, X., Qian, M., Zhou, Y., & Wang, Q. (2014). Simultaneous determination of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol in duck muscle by modified QuEChERS coupled to gas chromatography tandem mass spectrometry (GC-MS/MS). Analytical and bioanalytical chemistry, 406(12), 2899-2907.
[12] Tay, B. Y. P., & Wai, W. H. (2021). A gas chromatography–mass spectrometry method for the detection of chlorpyrifos contamination in palm‐based fatty acids. Journal of the American Oil Chemists' Society, 98(8), 881-887.
[13] Curwin, B. D., Hein, M. J., Barr, D. B., & Striley, C. (2010). Comparison of immunoassay and HPLC-MS/MS used to measure urinary metabolites of atrazine, metolachlor, and chlorpyrifos from farmers and non-farmers in Iowa. Journal of Exposure Science & Environmental Epidemiology, 20(2), 205-212.
[14] Radford, S. A., Panuwet, P., Hunter Jr, R. E., Barr, D. B., & Ryan, P. B. (2014). HPLC-MS/MS method for the measurement of insecticide degradates in baby food. Journal of Agricultural and Food Chemistry, 62(29), 7085-7091.
[15] Sradha S, A., George, L., P, K., & Varghese, A. (2022). Recent advances in electrochemical and optical sensing of the organophosphate chlorpyrifos: a review. Critical Reviews in Toxicology, 52(6), 431-448.
[16] Hossain, M. I., & Hasnat, M. A. (2023). Recent advancements in non-enzymatic electrochemical sensor development for the detection of organophosphorus pesticides in food and environment. Heliyon, 9(9).
[17] Zhou, C., Feng, J., Tian, Y., Wu, Y., He, Q., Li, G., & Liu, J. (2023). Non-enzymatic electrochemical sensors based on nanomaterials for detection of organophosphorus pesticide residues. Environmental Science: Advances, 2(7), 933-956.
[18] Ding, R., Li, Z., Xiong, Y., Wu, W., Yang, Q., & Hou, X. (2023). Electrochemical (bio) sensors for the detection of organophosphorus pesticides based on nanomaterial-modified electrodes: a review. Critical Reviews in Analytical Chemistry, 53(8), 1766-1791.
[19] Sharma, E., Singh, A., Singh, K., Ganti, S. S., Das Gupta, G., & Verma, S. K. (2025). Advancements in Electrochemical Sensors for Detection of Environmental Pollutants: A Review. Electrocatalysis, 1-26.
[20] Aslam, M., Raman, A. P. S., Sharma, U., Nand, B., Ebenso, E. E., Pandey, G., ... & Kumari, K. (2025). Carbon Nanocomposites in Electrochemical Sensing of Pesticides: Trends, Materials, and Applications. Chemistry & Biodiversity, e02490.
[21] Li, H., Wu, C., Wang, X., Wang, K., Zhu, Y., & Zhang, S. (2022). Research progress of acetylcholinesterase bioelectrochemical sensor based on carbon nanotube composite material in the detection of organophosphorus pesticides. Chemical Papers, 76(6), 3285-3302.
[22] Su, Y. Z., Xu, Q. Z., Chen, G. F., Cheng, H., Li, N., & Liu, Z. Q. (2015). One dimensionally spinel NiCo2O4 nanowire arrays: facile synthesis, water oxidation, and magnetic properties. Electrochimica Acta, 174, 1216-1224.