[1] N. Sandhyarani, Surface modification methods for electrochemical biosensors, in: Ali A. Ensafi (Ed.), Electrochemical Biosensors, Elsevier, 2019: pp. 45–75. https://doi.org/10.1016/B978-0-12-816491-4.00003-6.
[2] R. Singh, R. Gupta, D. Bansal, R. Bhateria, M. Sharma, A Review on Recent Trends and Future Developments in Electrochemical Sensing, ACS Omega 9 (2024) 7336–7356. https://doi.org/10.1021/ACSOMEGA.3C08060.
[3] D.P.; Carroll, P.M. Mendes, Recent advances in surface modification and antifouling strategies for electrochemical sensing in complex biofluids, Curr Opin Electrochem 40 (2023) 101319. https://doi.org/10.1016/j.coelec.2023.101319.
[4] M. Pimpilova, A brief review on methods and materials for electrode modification: electroanalytical applications towards biologically relevant compounds, Discov Electrochem 1:12 (2024) 1–20. https://doi.org/10.1007/s44373-024-00012-8.
[5] K. Fu, J.W. Seo, V. Kesler, N. Maganzini, B.D. Wilson, M. Eisenstein, B. Murmann, H.T. Soh, Accelerated Electron Transfer in Nanostructured Electrodes Improves the Sensitivity of Electrochemical Biosensors, Adv Sci (Weinh) 8 (2021) e2102495. https://doi.org/10.1002/ADVS.202102495.
[6] M.A. Deshmukh, H.N. Thorat, N.S. Gajmal, Carbon-Based Nanomaterials in Enhancing the Performance of Electrochemical Sensors for Environmental Monitoring, in: A.M. Parambil, E. Priyadarshini, P. Rajamani (Eds.), Carbon: Bulk-to-Nano Forms for Detection and Remediation of Environmental Contaminants, Springer, Cham, 2025: pp. 163–187. https://doi.org/10.1007/978-3-031-90613-8_6.
[7] R.D. Crapnell, C.E. Banks, Electroanalytical Overview: Screen-Printed Electrochemical Sensing Platforms, ChemElectroChem 11 (2024) e202400370. https://doi.org/10.1002/CELC.202400370;REQUESTEDJOURNAL:JOURNAL:21960216;ISSUE:ISSUE:DOI.
[8] S. Kempahanumakkagari, K. Vellingiri, A. Deep, E.E. Kwon, N. Bolan, K.H. Kim, Metal–organic framework composites as electrocatalysts for electrochemical sensing applications, Coord Chem Rev 357 (2018) 105–129. https://doi.org/10.1016/j.ccr.2017.11.028.
[9] R. Lalawmpuia, M. Lalhruaitluangi, Lalhmunsiama, D. Tiwari, Metal organic framework (MOF): Synthesis and fabrication for the application of electrochemical sensing, Environmental Engineering Research 29 (2024) 230636. https://doi.org/10.4491/EER.2023.636.
[10] Z.C. Yin, S.Q. Li, Z.Y. Shi, A. Singh, D. Srivastava, M. Muddassir, A. Kumar, J.C. Jin, New 5-nitrobenzene-1,2,3-tricarboxylate appended Cd(II) MOF: Synthesis and photoluminescent sensing of nitrofurazone (NFZ), Mater Today Chem 44 (2025) 102582. https://doi.org/10.1016/J.MTCHEM.2025.102582.
[11] R.K. Yan, X.L. Chen, J. Ren, H.L. Cui, H. Yang, J.J. Wang, Design and synthesis of a new highly efficient adjustable Ln-MOF for fluorescence sensing and information encryption, Spectrochim Acta A Mol Biomol Spectrosc 330 (2025) 125669. https://doi.org/10.1016/J.SAA.2024.125669.
[12] E. Kipkorir, O. Kimani, Electrochemical sensing of pharmaceutical pollutants using modified glassy carbon electrodes with nanostructures: A review, Inorg Chem Commun 179 (2025) 114827. https://doi.org/10.1016/J.INOCHE.2025.114827.
[13] L. Shubhadarshinee, P. Mohapatra, S. Behera, B.R. Jali, P. Mohapatra, A.K. Barick, Review on synthesis and characterization of metal nanoparticles doped carbon nanofillers based nanohybrids reinforced polyaniline nanocomposites, Polym.-Plast. Technol. Mater 63 (2024) 1011–1035. https://doi.org/10.1080/25740881.2024.2314508.
[14] A. Kumar, K.M. Gangawane, Nanoparticle-Modified Multifunctional Nano Carbons—Advances in Energy Storage, in: S.S. Kumar, P. Sharm, T. Kumar, V. Kumar (Eds.), Advances in Sustainable Energy Technologies, American Chemical Society, 2024: pp. 143–167. https://doi.org/10.1021/BK-2024-1488.CH007.
[15] T. Luan, Y. Zhao, X. Hou, Z. Tan, X. Li, J. Li, F. Wu, Integrated electrode design based on metal–organic frameworks for anion exchange membrane electrolyzers under high current densities, J Colloid Interface Sci 692 (2025) 137506. https://doi.org/10.1016/J.JCIS.2025.137506.
[16] M. Chalermnon, S.R. Thomas, J.M. Chin, M.R. Reithofer, Rational design of metal–organic frameworks (MOFs) as hosts for nanoparticles in catalytic applications: concepts, strategies, and emerging trends, Inorg Chem Front 12 (2025) 6435–6459. https://doi.org/10.1039/D5QI01201E.
[17] C. Li, H. Zhang, M. Liu, F.-F. Lang, J. Pang, X.-H. Bu, Recent progress in metal–organic frameworks (MOFs) for electrocatalysis, Ind. Chem. Mater. 1 (2023) 9–38. https://doi.org/10.1039/D2IM00063F.
[18] M.F. Sanad, S.T. Sreenivasan, Metal-organic framework in fuel cell technology: Fundamentals and application, in: S. Dave, R. Sahu, B.c. Tripathy (Eds.), Electrochemical Applications of Metal-Organic Frameworks: Advances and Future Potential, Elsevier, 2022: pp. 135–189. https://doi.org/10.1016/B978-0-323-90784-2.00001-0.
[19] H.Q. Zheng, Y. Cui, G. Qian, Guest Encapsulation in Metal–Organic Frameworks for Photonics, Acc Mater Res 4 (2023) 982–994. https://doi.org/10.1021/ACCOUNTSMR.3C00169.
[20] W. Zheng, L.Y.S. Lee, Metal–Organic Frameworks for Electrocatalysis: Catalyst or Precatalyst?, ACS Energy Lett 6 (2021) 2838–2843. https://doi.org/10.1021/ACSENERGYLETT.1C01350.
[21] C. Duan, K. Liang, Z. Zhang, J. Li, T. Chen, D. Lv, L. Li, L. Kang, K. Wang, H. Hu, H. Xi, Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks, Nano Mater. Sci. 4 (2022) 351–365. https://doi.org/10.1016/J.NANOMS.2021.12.003.
[22] S. Murugaiyan, M.S. Shabanur Matada, G.P. Kuppuswamy, S. Velappa Jayaraman, C. Di Natale, Y. Sivalingam, Carbon Electrodes Coated with TiO2–Cu-MOF Composites for Nonenzymatic Detection of Ascorbic Acid, ACS Appl Nano Mater 8 (2025) 20164–20176. https://doi.org/10.1021/ACSANM.5C02223.
[23] B.M. Kim, G.W. Jang, C. Ko, K.M. Choi, W.H. Choi, J. Shin, Individually Encapsulating Metal–Organic Frameworks in Partially Reduced Graphene Oxide to Enhance Electrical Conductivity While Preserving Porosity, ACS Appl Nano Mater 8 (2025) 20156–20163. https://doi.org/10.1021/ACSANM.5C02501.
[24] N. Nardi, L.G. Baumgarten, J.P. Dreyer, E.R. Santana, J.P. Winiarski, I.C. Vieira, Nanocomposite based on green synthesis of gold nanoparticles decorated with functionalized multi-walled carbon nanotubes for the electrochemical determination of hydroxychloroquine, J Pharm Biomed Anal 236 (2023) 115681. https://doi.org/10.1016/j.jpba.2023.115681.
[25] J.P.C. Silva, D.R. Santos-Neto, C.E.C. Lopes, L.R.G. Silva, L.M.F. Dantas, I.S. da Silva, A high sensitivity adsorptive-electrochemical method for rapid and portable determination of hydroxychloroquine, J Solid State Electrochem 29 (2025) 1013–1023. https://doi.org/10.1007/s10008-024-06032-z.
[26] M.H.A. Feitosa, A.M. Santos, A. Wong, M.D.P.T. Sotomayor, W.R.P. Barros, M.R.V. Lanza, F.C. Moraes, Enhancing hydroxychloroquine detection using carbon paste electrode modified with platinum nanoparticles and MWCNTs, J Appl Electrochem 55 (2025) 2265–2276. https://doi.org/10.1007/s10800-025-02293-2.
[27] J.C. dos Santos Júnior, J. de Oliveira S. Silva, J.F. dos Santos, M.D. Santos Monteiro, M. Oliveira Rodrigues, E. Midori Sussuchi, Nanoparticles based on carbon dots and reduced graphene oxide as electrochemical sensor for voltammetric determination of hydroxychloroquine, Electroanalysis 36 (2024) e202300164. https://doi.org/10.1002/elan.202300164.
[28] P.A. Pushpanjali, J.G.Manjunatha, N. Hareesha, T. Girish, A.A. Al-Kahtani, A.M. Tighezza, N. Ataollahi, Electrocatalytic Determination of Hydroxychloroquine Using Sodium Dodecyl Sulphate Modified Carbon Nanotube Paste Electrode, Top Catal 68 (2025) 1373–1381. https://doi.org/10.1007/s11244-022-01568-8.
[29] M. Amiri, Z. Hashemi, F. Chekin, Zinc oxide nanoparticles decorated nitrogen doped porous reduced graphene oxide-based hybrid to sensitive detection of hydroxychloroquine in plasma and urine, J Mater Sci Mater Med 36:4 (2025) 1–11.
https://doi.org/10.1007/s10856-024-06847-2