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Abstract

A novel coronavirus (CoV), SARS-CoV-2 surfaced in late 2019 in Wuhan, China and spread across whole
world. We started a study on COVID-19 and several clinical inhibitors, firstly we did molecular simulation on
COVID-19 by Gromacs tools. Then simulated conformation was docked with suggested drugs for confirmation
docking. The molecular docking results were similar to X-ray crystallography results in protein data bank and
the analyses were confirmed by this method. The resulting conformation of the reported drugs with the COVID-
19 was used for docking analyses. Furthermore, to study receptor conformation stability, a second MD
simulation on complex was performed in an aqueous environment. RMSD for complex showed that the
COVID19 conformation did not change in the presence of the suggested drugs. The results of docking showed
that estimated free energy of binding, final intermolecular energy and hydrogen bond play an important role in
interaction between suggested drugs and COVID-19. The results emerging docking showed that Sofosbuvir,
vitamin D and 2aurintricarboxylic acid have been potential to be applied as new COVID-19 anti corona virus

drugs.
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1. INTRODUCTION

The world is watching an unprecedented scientific
race to find effective treatments against the disease
caused by the new coronavirus (Sars nCov2) which
is an etiological agent responsible for the viral
pneumonia outbreak from early December 2019 to
the present day [1]. This outbreak began with
several unexplained cases of pneumonia reported
in Wuhan city, Hubei province in China, in
December 2019 [2]. Currently, there are no
therapeutic measures aimed at combating it, and
effective treatment options are still limited.
Notably. Sars nCov2 provides a new strain for a
disease or half of its genome [3-5], without close
genetic relationships with other viruses within the
sarbecovirus subgenus [6, 7]. This genomic part
also comprises half of the peak region that encodes
a multifunctional protein [8, 9] also responsible for
the entry of the virus into host cells [10, 11]. The
unique genetic characteristics of COVID-19 and its
potential association with virus characteristics and

virulence in humans have yet to be elucidated [12,
13]. The Coronaviridae family includes a large
number of viruses that are found in nature in fish,
birds, and mammals [14]. Human coronaviruses,
first characterized in the 1960s, are associated with
a large percentage of respiratory infections in
children and adults’ [15] Scientific interest in
coronaviruses increased exponentially after the
emergence of SARS Coronavirus (SARS-CoV) in
southern China [16]. A similar virus was later
found in horseshoe bats [17]. After the SARS
epidemic, bats were considered a potential species
of the reservoir that could be involved in future
coronavirus-related human pandemics [17]. Thus,
analyzing laboratory-confirmed cases were
reported in the Middle East, during 2012, the
Middle East respiratory coronavirus (MERS-CoV)
appeared in Saudi Arabia [18], since then, it has
killed 919 of the 2521 (35%) affected people [19].
Since SARS and MERS-CoV due to high mortality
rates are prioritized along with highly pathogenic
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coronaviral diseases other than MERS and SARS
[20, 21] under the Research and Development
Project published by WHO. In general,
coronaviruses (CoVs) are classified into four main
genera [22, 23]: Alphacoronavirus, Beta
coronavirus (which mainly infect mammals),
Gamma coronavirus and Delta coronavirus (which
mainly infect birds). By the end of 2019, six types
of human nCoV were identified [24] HCoV-NL63,
HCoV-229E [25], belonging to the general
Alphacoronavirus, HCoV-OC43, HcoV-HKUL,
SARS-CoV severe acute respiratory syndrome,
and Middle Eastern respiratory syndrome MERS-
CoV, belonging to the five genera of Beta
coronavirus [26]. Of the CoVs mentioned, the last
two are the most dangerous and were associated
with the outbreak of two epidemics in the early
21st century. On January 7, 2020, COVID-19 was
isolated and announced as a new seventh type of
human coronavirus. In this work, we will do
molecular docking (DOC), simulating the
interaction of these ligands, in this case,
remdesivir, umifenovir, brincidofovir, sofosbuvir,
tenofovir, vitamin D, molnupiravir, fleximer and
ribavirin to inhibit COVID-19.

2. Methodology

First of all, molecular dynamics simulation was
performed by gromacs tools [27]. Docking studies
were done by auto dock and BINding ANAlyzer
(BINANA) tools ([28, 29]. Visual inspections were
carried out by LIGPLOT (EMBL-EBI, Hinxton,
Cambridgeshire, CB10 1SD) binding mode
analyses were performed using the scripts within
LIGPLOT tool. MVD (was used to produce 3-D
figures [30, 31].

2.1. Preparation of data set

The structures of these drugs are shown in Fig. 1
and Table 1. The chemical structure of the drugs
was constructed in Hyperchem and after that all of
them optimized by PRODRG [32]. Energy
minimization of these drugs was done using the
AM1 semi-empirical method with the Polak—
Ribiere algorithm until a root-mean-square
gradient of 0.01 kcal mol* was achieved. The
resulted geometries were used for the docking
study and modified by PRODRG [33].

The X-ray crystal structure for COVID-19 was
selected pdb bank server were introduced. It is in
complex with 2456117795 at 2.7 °A resolution
was identified by Fearon and stored in the protein
data bank (PDB ID code: 5R7Y).

2. 2. Molecular dynamics simulation

Molecular dynamics simulation was performed,;
the structure of COVID-19 was simulated in a
water box. The MD simulation process was carried
out by the GROMACS 4.5.1 package using the
GROMOS-96 force field.23 Water molecules were
added using a simple point charge (SPC216) model
[34]. Counter-ions were added by replacing
solvent molecules in order to neutralize the system.
The system was then placed in a cubic box with the
dimensions 8.63x8.63x8.63 nm? containing 63413
atoms in total. Periodic boundary conditions were
applied in the xyz space. Initially, energy
minimization was performed before implementing
the position restraint procedure. Then, NVT and
NPT simulations were carried out. The NVT
simulation was performed at a constant 310 K with
a Nose-Hoover thermostat. Once the temperature
was stabilized, the NPT simulation was performed
using the Parrinello- Rahman pressure coupling
under a pressure of 1 bar. The particle mesh Ewald
(PME) method interaction was used. For numerical
integrations, the velocity verlet algorithm was
used26 and the initial atomic velocities were
generated using a Maxwellian distribution at the
given absolute temperature. Finally, the full system
was subjected to 6000 ps MD at 310 K under 1 bar
pressure. The MD simulation and result analyses
were performed on the open SUSE 11.3 Linux on
an Intel Core 2 Quad Q6600 2.4 GHz with 4 GB of
RAM.

In the next step, simulations were performed in a
constant number of molecules, pressure, and
temperature by using the Berendsen thermostat at
the temperature 300 K and pressure 1 bar,
respectively. MD simulation studies consist of
equilibration and production phases. In the first
stage of equilibration, the solute (protein and
counter ion) was fixed and the position-restrained
dynamics simulation of the system was done at 300
K. The water and the counter ion were permitted to
relax about the protein. The relaxation time of
water was 20 ps. Finally, the full system was
subjected to 6000 ps MD at 300 K temperature and
1 bar pressure. The periodic boundary condition
was used, and the motion equations were
integrated by applying the leap-frog algorithm with
a time step of 2 fs. The atom coordinates were
recorded every 1 ps during the simulation for latter
analysis. The MD simulation lasted 5 ns to ensure
that the whole systems were stable.
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Fig. 1. The structures of reported drugs.

Table 1. Reported drugs

Brincidofovir

Feleximer

MOLNUPIRAVIR

Remdisiver

Ribavirin.svg

Sofosbuvir

Tenfovir

Umifenovir

Vitamin D

BCX4430 (Immucillin-A)

Aurintricarboxylic ACID (ATA)

—_— K| = T|Q| =D | |O|T|D

N4-Benzoyl-5’-O-(dimethoxytrityl)-5-methyl-2°-O-methylcytidine (Bz-DMT-
dc)
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2.3. Binding site refinement

To validate the reliability of the docking
methodology adopted herein, the Z456117795
molecules in the X-ray crystallographic structure
of 5R7Y pdb were taken as a testing molecule.
Z456117795 were removed from the binding site
and redocked to COVID-19 a by the blind docking,
and the docked pose was compared with the crystal
structure pose by calculating the RMSD value. The
molecular docking results revealed that the binding
site of Z456117795, obtained by auto dock tools,
was similar to that of the crystal complex with an
RMSD of 0.37 and 1.45 A, respectively (Fig. 2).
The results indicate that the docking method with
the auto dock tools is valid.

The applied box size for docking was 82x86x126
angstroms and grid resolution were 0.375 °A. The
residues of the binding site were obtained His 41,
Cys 44, serd6, Met 49, His 164, Met 165, Arg188,
Gln 189.

The hydrogen bond interactions are produced by
the close contacts between electronegative atom
(nitrogen, oxygen and ...) and hydrogen atom
(hydrogen bond distance is 3.05 °A) and the
hydrophobic interactions are generated by the
close contacts between the non-polar amino acid
side chains of the enzyme and the lipophilic groups
of the inhibitor. These results clearly indicate that
that Estimated free energy of binding, final
intermolecular energy and hydrogen bond can
affect the drugs activity of COVID-19 inhibitors,
and it is suggested that more H-bond and
hydrophobic interactions with the binding site
could improve the drugs activity of the drugs [34].

2.4. Docking studies

Molecular docking was performed by auto dock
4.0 program using the Lamarckian Genetic
Algorithm  (LGA) method [35]. Docking
parameters for the LGA were selected as
population size of 150 individuals, 2.5 million
energy evaluations, maximum of 27,000
generations, number of top individuals to survive
to next generation of 1, mutation rate of 0.02,
crossover rate of 0.8, 25 docking runs, and random

initial  positions and conformations. The
probability of performing a local search for an
individual to the population was set to 0.06 [36].
Auto dock is a suitable program for actual docking
simulation [37]. To more confidence all drugs were
docked by auto dock vina too. A grid map of the
size applied was the same as auto dock tools with
a grid-point spacing of 1A.

Then a set of 12 reported drugs was docked into
COVID-19 model. The grid box settings were the
same as those used for Z456117795.

All drugs were subsequently docked into the
binding site obtained from the COVID-19 and
conformation of the reported drugs with the lowest
binding free energy with most populations and
lowest affinity for auto dock tools and Vina tools
subsequently were chosen for analyzing.

2.5. Descriptor calculation

Descriptors were calculated based on drugs—
COVID19 interactions (structure-based) using
auto dock and auto dock vina.

Auto dock computed eight types of energy values
that consisted of: (1) estimated free energy of
binding (EFreeBind), (2) van der Waals (vdW) +
hydrogen bonding (Hbond) + desolvation energy
(desolv), (3) final intermolecular energy
(ElnterMol) including vdW, Hbond, desolvation,
and electrostatic energies, (4) electrostatic energy
(EElec), (5) final total internal energy (EFTot), (6)
torsional free energy (ETors), (7) Estimated
Inhibition Constant, Ki and (8) the unbound
system’s energy (EUnb) and the Gasteiger charge
descriptor. Auto dock vina computed Affinity.
Then, the docking conformer at its lowest binding
energy was loaded into Molgero virtual docker to
calculate the descriptors. Molgero descriptors
consist of (i) close contacts; Molgero determined
all ligand and protein residue that come within 2.5
and 4 °A of each other; (ii) -electrostatic
interactions; (iii) hydrogen bonds; (iv)hydrophobic
contacts. The major descriptors were calculated
from the interactions of suggested drugs with the
COVID-19 showed in Table 2.
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Fig. 2. Binding site refinement

Table 2. The major descriptors were calculated from the interactions of suggested drugs with the COVID-19.

symbol Affinity Estimated H- Estimated Final Final Total | Electrostat | Torsional
(kcal/mol) Inhibition bond Free Energy | Intermolecul Internal ic Energy | Free Energy

Constant, Ki of Binding ar Energy Energy (kcal/mol) | (kcal/mol)
(micromolar) (kcal/mol) (kcal/mol) (kcal/mol)

f -8.2 67.64 5 -8.65 -9.54 -0.87 -0.99 +2.39

k -8.0 55.23 5 -8.40 -9.89 +0.65 +0.91 +1.49

i -8.0 58.29 5 -7.93 -9.43 -0.76 +0.98 +1.19

| -7.8 48.57 3 -5.88 -8.46 -0.64 -0.76 +3.58

c -7.8 68.59 4 -5.68 -8.98 -0.05 -0.96 +0.30

g -7.5 91.02 3 -5.34 -7.92 -0.18 -0.48 +1.79

d -7.1 142.11 3 -5.25 -7.42 -1.02 -0.02 +4.18

b -7.1 98.09 2 -5.43 -6.92 -0.59 -0.10 +0.89

e -6.8 102.02 3 -5.05 -6.04 -0.05 00.00 +0.60

h -6.8 101.72 2 -5.05 -6.83 -1.42 -0.00 +2.39

i -6.8 140.97 1 -5.99 -6.58 -0.42 -0.04 +0.60

a -5.8 101.53 1 -3.54 -7.12 -0.22 -0.09 3.58
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3. Results and discussion
3.1. Molecular Dynamic

To provide conformation of COVID-19 in a water
environment, a 6000 ps MD simulation was carried
out on COVID-19 in a water box. The stability of
the system (protein, water, and ions) was tested by
means of the root mean square deviations
(RMSD’s) of protein with respect to protein’s
initial structure. The RMSD values of COVID-19
were plotted from 0 to 6000 ps which imply that
the RMSD of the system reaches equilibrium and
oscillates around 0.302 nm after 3000 ps of the
simulation onset. (Fig. 3) The average RMSD
value of protein backbone was calculated to be
0.302 £ 0.015 nm. The RMSD value indicates that
COVID-19 conformation reached equilibrium
after 3800 ps in a water environment. The
equilibrated conformation of the receptor was used
for docking. 54

3.2. Docking studies

Docking was performed by auto docks program
using the Lamarckian genetic algorithm (LGA)
method. As be mentioned auto dock is a suitable
program for actual docking simulation. The
docking studies were done for the obtained
reported drugs for COVID-19.

Then, the docking poses were ranked based on
their docking scores and it was selected as the best
conformer of drugs by using score. The most
potent drugs were chosen based on docking
descriptors. Two and three-dimensional images of
the binding site were produced using the
LIGPLOT tools and also produced using the
Molgro virtual docker (MVD) package (Molegro
ApS, Denmark) respectively. The docking of the
most potent drugs with the COVID-19 is shown in
Fig. 4.

3.3. Analysis of docking

Analysis of the suggested drugs binding locations
for the COVID-19 revealed that, whereas the
reported drugs docked to the orthosteric site of
COVID-19. As already mentioned, 9 descriptors
were calculated for the reported drugs based on
drug-Covid19 interactions using auto dock tools.
These most important descriptors were estimated
free energy of binding, final intermolecular energy,
hydrogen bond and electrostatic energies (A
summed electrostatic energy is calculated using the
Gasteiger partial charges by auto dock Tools). The
results of docking studies on 12 reported drugs
show in the table 2. The most potent drugs were
Sofosbuvir, vitamin D and 2aurintricarboxylic. It
showed the smaller the Ki, the greater the binding

affinity and the smaller amount of medication
needed in order to inhibit the activity of that
enzyme. (Table 2).

Some results showed in the Fig. 4 and 5.

3.4. Molecular dynamics simulation of the
COVID19-drug complex

The MD simulation on the most potent drug—
COVID19 complex was done to study the effects
of drugs on the COVID-19 conformation. The
topology factors of sofosbuvir were built using the
Dundee PRODRG2.5 server. PRODRG server
select bonded parameters and atom types correctly.
The complex from docking was selected as a
representative for 6000 ps MD simulation in a
water box as shown in Fig. 3. Analysis of the Fig.
3 indicated that the RMSD of the system reaches
equilibration around an average value after 3000 ps
simulation time. The stability of COVID-19
conformation was confirmed by the analysis of
RMSD values (Fig. 3). The average value of
RMSD for the complex was 0.350 + 0.026 nm.
Therefore, it was concluded that the conformation
of the COVID-19 in the presence of sofosbuvir has
stabled. This stability confirmed the docking
results.

5. Conclusion

COVID-19 that can correctly identify active
compounds are important tools for rational drug
design. In this study, docking molecular combined
with molecular dynamic were developed to predict
activity of reported drugs for COVID-19. We have
simulated human COVID-19 model based upon a
crystal structure and gromacs tools to stable
COVID-19 in a water environment. Then
molecular docking was carried out to explore the
binding site. After docking of the most potent
drugs of COVID-19 Sofosbuvir, the residues of the
binding site obtained were His 41, Met 49, Asn
142, Gly 143, Cys 145, His 164, Met165, Glul66,
Pro 168, Asp 187, Arg188, GIn 189, Thr 190,
Glul92 in the cavity of the COVID-19. The
selected descriptors and docking analyses
indicated that active-site flexibility,
hydrophobicity, summed electrostatic energy,
numbers of atom-type pair counts at a distance of
4.0 °A and torisonal free energy play important
roles in the COVID-19-drugs complex.

We hope it be served as a useful guideline for
further treatment and designing of new compounds
as COVID-19 inhibitors.
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Fig. 3. RMSD values of protein backbone for COVID-19 and COVID-19 complex during 6000 ps MD simulation.
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compound a: using MVD

compound a: using ligplot
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compound j: using ligplot

Fig. 5. The docking of the least potent inhibitors (compound g, j), a: using MVD, b: using
ligplot
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