[1] A.R. Bowie, M.G. Sanders and P.J. Worsfold, Analytical Applications of Liquid Phase Chemiluminescence Reactions — A Review, J. Biolumin. Chemilumin. 11 (1996) 61-90.
[2] P.J.M. Kwakman and U.A.T. Brinkman, Peroxyoxalate chemiluminescence detection in liquid chromatography, Anal. Chim. Acta 266 (1992) 175-192.
[3] A. Nishitani, Y. Tsukamoto, S. Kanda and K. Imai, Determination of the fluorescent drugs dipyridamole and benzydamine in rat plasma by liquid chromatography with peroxyoxalate chemiluminescence detection, Anal. Chim. Acta 251 (1991) 247-253.
[4] B. Yan, S.W. Lewis, P.J. Worsfold, J.S. Lancaster and A. Gachanja, Procedures for the enhancement of selectivity in liquid phase chemiluminescence detection. Anal. Chim. Acta 250 (1991) 145-155.
[5] A.M. Garcia-Campana. Chemiluminescence in Analytical Chemistry: Taylor & Francis, (2001).
[6] C. Gooijer and N.H. Velthorst, Low-level interferences in peroxyoxalate chemiluminescence, Biomed. Chromatogr. 4 (1990) 92-95.
[7] M.M. Nakamura, S.A. Saraiva and N. Coichev, Minireview: A Caritical Review of the Transition Metal Ions Influence on Peroxyoxalate Chemiluminescence, Anal. Lett. 33 (2000) 391-404.
[8] M. Shamsipur and M.J. Chaichi, Quenching effect of triethylamine on peroxyoxalate chemiluminescence in the presence of 7amino-4-trifluoromethylcumarin, Spectrochim. Acta, Pt A: Mol Biomol Spectrosc. 57 (2001) 2355-2358.
[9] K. Nakashima, M. Wada, N. Kuroda, S. Akiyama and K. Imai, High-Performance Liquid Chromatographic Determination of Hydrogen Peroxide with Peroxyoxalate Chemiluminescence Detection, J. Liq. Chromatogr. 17 (1994) 2111-2126.
[10] M. Stigbrand, E. Ponten and K. Irgum, 1,1'Oxalyldiimidazole as Chemiluminescence Reagent in the Determination of Low Hydrogen Peroxide Concentrations by Flow Injection Analysis, Anal. Chem. 66 (1994) 1766-1770.
[11] C.L.R. Catherall, T.F. Palmer and R.B. Cundall, Chemiluminescence from reactions of bis(pentachloro-phenyl)oxalate, hydrogen peroxide and fluorescent compounds. Role of the fluor and nature of chemielectronic process(es), J. Chem. Soc. Faraday Trans2: Mol. Chem. Phys. 80 (1984) 837-849.
[12] A.G. Hadd, A.L. Robinson, K.L. Rowlen and J.W. Birks. Stopped-Flow Kinetics Investigation of the Imidazole-Catalyzed Peroxyoxalate Chemiluminescence Reaction, J. Org. Chem. 63 (1998) 3023-3031.
[13] F. McCapra, Chemical generation of excited states: The basis of chemiluminescence and bioluminescence, Methods Enzymol: Academic Press; (2000) p.p. 3-47.
[14] T. Wilson, Comments on the mechanisms of chemi and bioluminescence, Photochem. Photobiol. 62 (1995) 601-606.
[15] Á. Alcázar, J.M. Jurado, M.J. Martín, F. Pablos, A.G. González, Enzymaticspectrophotometric determination of sucrose in coffee beans, Talanta 67 (2005) 760-766.
[16] C. Ma, Z. Sun, C. Chen, L. Zhang and S. Zhu, Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC–ELSD, Food Chem.145 (2014) 784-788.
[17] F.J. Rambla, S. Garrigues and M. de la Guardia, PLS-NIR determination of total sugar, glucose, fructose and sucrose in aqueous solutions of fruit juices, Anal. Chim. Acta 344 (1997) 41-53.
[18] H. Shekarchizadeh, A.A. Ensafi and M. Kadivar, Selective determination of sucrose based on electropolymerized molecularly imprinted polymer modified multiwall carbon nanotubes/glassy carbon electrode, Mater. Sci. Eng. C. 33 (2013) 3553-3561.
[19] O.O. Soldatkin, V.M. Peshkova, O.Y. Saiapina, I.S. Kucherenko, O.Y. Dudchenko, V.G. Melnyk, O.D. Vasylenkoc, L.M. Semenychevac, A.P. Soldatkina, b, S.V. Dzyadevycha, Development of conductometric biosensor array for simultaneous determination of maltose, lactose, sucrose and glucose, Talanta 115 (2013) 200-207.
[20] E. Vargas, M. Gamella, S. Campuzano, A. Guzmán-Vázquez de Prada, M.A. Ruiz, A.J. Reviejo and J.M. Pingarrón, Development of an integrated electrochemical biosensor for sucrose and its implementation in a continuous flow system for the simultaneous monitoring of sucrose, fructose and glucose, Talanta 105 (2013) 93-100.
[21] N.D. Danielson, C.A. Heenan, F. Haddadian and A. Numan, Fluorometric Determination of Fructose, Glucose, and Sucrose Using Zirconyl Chloride, Microchem. J. 63 (1999) 405-414.
[22] J. Zhu, L. Shu, M. Wu, Z. Wang, Q. Wang, P. He and et al., Development of a compact chemiluminescence system coupled with capillary electrophoresis for carbohydrate analysis, Talanta 93 (2012) 428-432.
[23] N. Balasubramanian, RECENT SYNTHETIC APPLICATIONS OF NITRONES. A REVIEW, Org. Prep. Proced. Int. 17 (1985) 23-47.
[24] J. Hamer and A. Macaluso, Nitrones. Chem Rev. 64 (1964) 473-95.
[25] J.Y. Pfeiffer and A.M. Beauchemin, Simple Reaction Conditions for the Formation of Ketonitrones from Ketones and Hydroxylamines, J. Org. Chem. 74 (2009) 8381-8383.
[26] K.R. Maples, A.R. Green and R.A. Floyd, Nitrone-related therapeutics: potential of NXY-059 for the treatment of acute ischaemic stroke, CNS Drugs. 18 (2004) 1071-1084.
[27] C.E. Thomas, D.F. Ohlweiler, V.L. Taylor and C.J. Schmidt, Radical trapping and inhibition of iron-dependent CNS damage by cyclic nitrone spin traps, J. Neurochem. 68 (1997) 1173-1182.
[28] F.A. Villamena, A. Das and K.M. Nash, Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics, Future Med. Chem. 4 (2012) 1171-1207.
[29] S. Pyne, J. Safaei-G, B. Skelton and A. White, 1,3-Dipolar Cycloadditions of a Chiral Oxazolidinone With Nitrones and Nitrile Oxides, Aust. J. Chem. 48 (1995) 1511-1533.
[30] S.G. Pyne, J. Safaei-G., K. Schafer, A. Javidan, B.W. Skelton and A.H. White, Diastereoselective 1,3-Dipolar Cycloadditions and Michael Reactions of Azomethine Ylides to (2<i>R</i>)-3Benzoyl-4-methylidene-2-phenyloxazolidin5-one and (2<i>S</i>)-3-Benzoyl-2-t-butyl4-methylideneoxazolidin-5-one, Aust. J. Chem. 51 (1998) 137-158.
[31] K.B. Torssell, Nitrile oxides, nitrones, and nitronates in organic synthesis: novel strategies in synthesis: Vch New York (1988). [32] J.G. Burr, Chemi- and Bioluminescence: M. Dekker (1985).
[33] K. Honda, K. Miyaguchi and K. Imai, Evaluation of aryl oxalates for chemiluminescence detection in highperformance liquid chromatography, Anal. Chim. Acta 177 (1985) 103-110.
[34] M. Katayama, H. Takeuchi and H. Taniguchi, Determination of amines by flowinjection analysis based on aryl oxalateSulphorhodamine 101 chemiluminescence, Anal. Chim. Acta 281 (1993) 111-118.
[35] M.M. Rauhut. Chemiluminescence from concerted peroxide decomposition reactions, Acc. Chem. Res. 2 (1969) 80-87.
[36] M. Shamsipur, A. Yeganeh-Faal, M.J. Chaichi, M. Tajbakhsh and A. Parach, A study of chemiluminescence from reaction of bis(2,4,6-trichlorophenyl)oxalate, hydrogen peroxide and an optical brightener 5-(3anilino-5-chloroanilino)-2-{(E)-2-[4-(3-anilino-5-chloroanilino)-2-sulfophenyl]-1-ethenyl}-1-benzenesulfonic acid, Dyes and Pigments 72 (2007) 113-118.
[37] M. Shamsipur, A. Yeganeh Faal, M.J. Chaichi and M. Bordbar, Evaluation and determination of kinetic and thermodynamic chemiluminescence characteristics of a novel peroxyoxalate system using two new triazine derivative, J. App. Chem. 7 (2013) 11-21.
[38] M.M. Rauhut, L.J. Bollyky, B.G. Roberts, M. Loy, R.H. Whitman, A.V. Iannotta, A.M. Semsel and R.A. Clarke, Chemiluminescence from reactions of electronegatively substituted aryl oxalates with hydrogen peroxide and fluorescent compounds, J. Am. Chem. Soc. 89 (1967) 6515-6522.
[39] R.M. Hochstrasser and G.B. Porter, Primary processes in photo-oxidation, Q Rev: Chem. Soc. 14 (1960) 146-173.
[40] M.M. Rauhut, B.G. Roberts and A.M. Semsel, A Study of Chemiluminescence from Reactions of Oxalyl Chloride, Hydrogen Peroxide, and Fluorescent Compounds1, J. Am. Chem. Soc. 88 (1966) 3604-3617.
[41] M.J. Chaichi, A.R. Karami, A. Shockravi and M. Shamsipur, Chemiluminescence characteristics of cumarin derivatives as blue fluorescers in peroxyoxalate–hydrogen peroxide system, Spectrochim. Acta, Pt A: Mol. Biomol. Spectrosc. 59 (2003) 11451150.
[42] M. Shamsipur, M.J. Chaichi and A.R. Karami, A study of peroxyoxalatechemiluminescence of acriflavine, Spectrochim. Acta, Pt A: Mol. Biomol. Spectrosc. 59 (2003) 511-517.
[43] J.H. Lee, J.C. Rock, M.A. Schlautman and E.R. Carraway, Characteristics of key intermediates generated in uncatalyzed bis(2,4-dinitrophenyl) oxalate (DNPO) chemiluminescence reactions, J. Chem. Soc. Perkin. Trans. 2 (2002) 1653-1657.
[44] M.M. Nakamura, S.A. Saraiva and N. Coichev, Parameters Affecting the Peroxyoxalate Chemiluminescence, Anal. Lett. 32 (1999) 2471-2487.
[45] M. Shamsipur, A. Yeganeh-Faal, M.J. Chaichi, M. Tajbakhsh and A. Parach, A study of peroxyoxalate-chemiluminescence of 4,4′-bis{[4,6-bis (2-hydroxyethyl)amino1,3,5-triazin-2-yl]amino}stilbene-2,2′-disulfonic acid-disodium salt as a novel blue fluorescer, Spectrochim. Acta, Pt A: Mol. Biomol. Spectrosc. 66 (2007) 546-551.
[46] S.Y. Kazemi and S.M. Abedirad, Effect of glutathione on peroxyoxalate chemiluminescence of hypericin as the fluorophore, Spectrochim. Acta, Pt A: Mol. Biomol. Spectrosc. 118 (2014) 782-786.
[47] K. Zargoosh, M. Shamsipur, M. Qandalee, M. Piltan and L. Moradi, Sensitive and selective determination of glucose in human serum and urine based on the peroxyoxalate chemiluminescence reaction of a new Fluorophore, Spectrochim. Acta, Pt A: Mol. Biomol. Spectrosc. 81 (2011) 679-683.