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Abstract 

A 2D image approach has been used to predict 13C NMR chemical shifts of β-naphthalene derivatives. In multivariate image 

analysis-Quantitative structure property relationship (MIA-QSPR) study, descriptors correlating with dependent variable 

are pixels (binaries) of 2D chemical structures; Variant pixels in the structures (substitutes) account to explained variance 

in the property (chemical shifts). A case study is carried out in order to predict 13C NMR chemical shifts of 10 carbon 

positions of 24 mono substituted β-naphthalenes. The resulted descriptors were subjected to principal component analysis 

(PCA) and the most significant principal components (PCs) were extracted. Then, MIA-QSPR modeling was done by 

means of principal component regression (PCR) and principal component –artificial neural network (PC-ANN) methods. 

A correlation ranking procedure is proposed here to select the most relevant set of PCs as inputs for PCR and PC-ANN 

modeling methods. Here, the 13C chemical shifts of studied compounds were predicted using density functional theory 

(DFT) calculations, too. The widely applied method of gauge included atomic orbital (GIAO) B3LYP/6-311++ G have 

been used. The performance of the GIAO was also compared with PCR and PC-ANN models. Results showed the 

superiority of the PC-ANN over GIAO and PCR models. Finally, 13C NMR chemical shifts of studied compounds were 

calculated using ChemDraw program.  
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 چکیده
ارتباط کمی  -درمطالعه آنالیز چند متغیره تصویر مشتقات بتا نفتالن استفاده شده است. NMR-C13روش تصویر دو بعدی برای پیش بینی جابجایی شیمیایی 

)استخلاف( موجب تغییر در ویژگی )جابجایی  باشند. تغییر درساختار شیمیایی می ها نقاط دو بعدی ساختارهای کننده توصیف،  (MIA-QSPR)ساختار ویژگی
بینی شده است. بر روی  بتا نفتالن تک استخلافی پیش 22موقعیت کربن مربوط به  NMR-C13 51جابجایی شیمیایی  ،شود. در این مطالعه شیمیایی( می

های رگرسیون  با روش MIA-QSPRاند. سپس مدلسازی   اصلی استخراج شده ءمهمترین اجزااصلی صورت گرفته و  ءهای حاصل آنالیز اجزا کننده توصیف
عنوان ورودی برای دو  اصلی به ءترین اجزا انجام شده است. برای انتخاب مناسب (PC-ANN)شبکه عصبی مصنوعی  -اصلی ءو اجزا (PCR)اصلی  ءاجزا

ترکیبات مورد  C13جابجایی شیمیایی ازروش ترتیب همبستگی استفاده شده است. همچنین   ،شبکه عصبی مصنوعی -اصلی ءاصلی و اجزا ءروش رگرسیون اجزا
-PCو  PCRبا دو روش  GIAO بینی شده است. عملکرد پیش B3LYP/6-311++ G (GIAO)مطالعه با استفاده از تئوری تابع چگالی و روش  

ANN مقایسه شده است. نتایج ارجحیت مدل PC-ANN را نسبت به دو روشGIAO  و PCR جابجایی شیمیایی ترکیبات با  "دهد. نهایتا نشان می

 محاسبه شده است.  ChemDrawاستفاده از برنامه 

 

 هاي کلیديواژه

  .؛ بتا نفتالنC13جابجایی شیمیایی  تئوری تابع چگالی؛؛ آنالیز چند متغیره تصویر
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1. INTRODUCTION 

Nuclear magnetic resonance (NMR) spectroscopy 

is undoubtedly one of the most important methods 

for elucidating complicated structures and 

processes, including structural configuration [1-2], 

reaction mechanisms, dynamic processes, 

chemical equilibrium and even three-dimensional 

structures of protein molecules in aqueous solution 

[3]. However, it is commonly not enough to obtain 

all structural parameters from experiments, due to 

the diverse natures of the structures and 

reactivities. Various different approaches have 

been developed and tested for chemical shift 

calculation, however, the most widely used 

technique is the Gauge Including Atomic Orbital 

(GIAO), calculation of NMR chemical shifts at the 

Density Functional Theory (DFT) B3LYP (Becke-

3-Lee-Yang-Par) 6-311+G(2d,p) level which is 

suitable for organic molecules of medium size with 

a molecular weight usually less than 1000. 

Relatively accurate values of 1H chemical shifts 

can be achieved using this technique, but 

predictions of 13C chemical shifts are rather poor 

and do not always allow unambiguous solution of 

stereo chemical problems [4].  

Chemometric tools, particularly principal 

component analysis (PCA), have been used to 

determine the ruling effects of substituents on 

chemical shifts [5]. However, few reports are 

dedicated to apply multivariate tools for 

quantitative NMR, determination of chemical 

shifts by using regression methods [6-8]. 

Quantitative structure-activity/property relation-

ship (QSAR/QSPR) models have been introduced 

for calculating the physicochemical properties 

with various numerical descriptors of chemical 

structures. These relationships derive correlations 

between the similarities of individual compounds 

and their biological activity/chemical property [9-

11].  

A 2D image-based methodology recently 

developed (MIA-QSPR, multivariate image 

analysis applied to quantitative structure- property 

relationship) [12-13], which avoids 

conformational screening and 3D alignment steps, 

has also demonstrated to be nicely predictive with 

some operational advantages. Thus, this method 

can be used for predicting NMR spectra. In a 

previous work, we applied MIA-QSPR model for 

predicting 13C NMR chemical shifts of α- mono 

substituted naphthalenes [14]. We proposed a 

correlation ranking- principal component -

artificial neural network (CR-PC-ANN) method. 

CR-PC-ANN algorithm that selecting of PCs is 

based on correlation ranking for PC-ANN showed 

better results than the eigen-value ranking method. 

Goodarzi et al. have reported a quantitative 

structure–property relationship study on the 13C 

chemical shifts of methoxyflavonol derivatives 

using MIA-QSPR method [15]. They revealed that 

the predictive ability of MIA descriptors is 

comparable or even superior to the Gauge Included 

Atomic Orbital (GIAO) procedure for 13C 

chemical shift calculations. Geladi and Esbensen 

[16] have demonstrated that image analysis may 

provide useful information in chemistry, though 

the descriptors do not have a direct 

physicochemical meaning, since they are binaries. 

In QSPR, images (2D chemical structures) have 

shown to contain chemical information [17-18], 

allowing the correlation between chemical 

structures and properties.  

In the present work, we use of 2D images, which 

are the proper structures of the compounds that can 

be drawn with aid of any appropriate program, as 

descriptors in QSPR. Then, multivariate image 

analysis-quantitative structure property 

relationship study (MIA-QSPR) is proposed to 

model and predict the 13C chemical shifts of a 

series of β-naphthalene derivatives [19] using 

principal component regression (PCR) and 

principal component- artificial neural network 

(PC-ANN) modeling methods. Also, density 

functional theory (DFT) calculations have been 

used for calculating 13C NMR chemical shift of 

compounds. Finally obtained results using 

different methods are compared. 

 

2. EXPERIMENTAL 
2.1 Data set 

All data of the present investigation were obtained 

from literature [19]. This data set consists of 24 

mono substituted β-naphthalenes. 13C chemical 

shifts of studied compounds in ppm relative to 

TMS have been reported. The chemical structure 

of these compounds and their 13C chemical shifts 

has been listed in Table 1. For PCR, data set was 

divided randomly into two groups of training set 

(16 compounds) and validation set (8 compounds) 

and for ANN modeling, data set was divided into 

three groups of training set (16 compounds), 

validation set (4 compounds) and test set (4 

compounds).   

 

2.2 MIA 

MIA descriptors are binaries obtained from pixels 

of 2D chemical structures, which these pixels are 

correlated with dependent variables for making 

QSPR models. The 2D structures of each 

compound of Table 1 were systematically drawn in 

the ChemSketch module of ACDLabs program 

[20] and subsequently saved as bitmap files. The 

workspace size in each 2D image saved was 

205×120 pixels and aligned by a common point 
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among them in a fixed window of 105×65 pixels, 

as illustrated in Fig. 1. The molecules used in the 

model should have some similarity in molecular 

structure so that one can proceed with calibration, 

in this case using a congeneric series. The 2D 

images were read and converted into double array 

by using Matlab [21]. Each image of dimension 

205×120 pixels was unfolded to a 1×24600 row 

and then the 24 images were grouped to from 

24×24600 matrix. Columns with zero variance 

were removed to minimize memory, reducing the 

size of matrices to 24×887.  

 

2.3 PCR 

In QSAR/QSPR studies, regression model of the 

form y = Xb + e may be used to describe a set of 

predictor variables (X) with a predicted variable 

(y) by means of regression vector (b). However, 

the colinearity, which often existed between 

independent variables, creates a severe problem in 

certain types of mathematical treatment such as 

matrix inversion [22]. Sometimes, the dimension 

of the input matrix is large, but the components of 

the matrices are highly correlated (redundant). It is 

useful in this situation to reduce the dimension of 

the input matrix. PCA is an effective procedure for 

reducing the dimensionality of large data sets. It 

permits identification of associations between 

variables, therefore reducing the dimensionality of 

the data set [23-25]. Different methods have been 

addressed to select the significant PCs for 

calibration purposes. In the most common one 

which is called correlation ranking, the factors are 

ranked by their correlation coefficient with the 

property to be correlated (a dependent variable) 

[26]. The factor with highest correlation 

coefficient is considered as the most significant 

one and, subsequently, the factors are introduced 

in to the calibration model until no further 

improvement of the calibration model is obtained.  

 

 

Fig. 1. 2D images and unfolding step of the 24 chemical 

structures to give the X-matrix.  

 

 

Table 1. The structure of β-naphthalene derivatives and experimental 13C chemical shifts for 10 carbon positions. 

No. Substituent X C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 

1 H 128 125.9 125.9 128 128 125.9 125.9 128 133.6 133.6 

2 CH3 126.7 135.2 127.9 127.2 127.5 124.8 125.7 127.4 133.5 131.6 

3 C(CH3)3 124.7 148.4 122.9 127.6 128 125.2 125.7 127.4 134 132.3 

4 CH2Br 126.3 134.9 127.8 127.6 127.5 126.6 126.2 128.6 133 132.9 

5 CH2OH 125.3 138.2 121.5 127.9 127.6 125.7 126 127.8 133.3 132.8 

6 CF3 126 127.2 121.7 129.1 128.1 128.3 127.4 129.1 132.5 134.9 

7 F 111 160.8 116.3 130.4 128 125.2 127 127.4 134.3 130.6 

8 Cl 126.6 131.6 126.7 129.5 127.8 126.1 127 126.9 134.3 131.7 

9 Br 129.8 119.7 129 129.5 127.7 126.1 126.7 126.9 131.6 134.3 

10 I 137.2 91.8 134.9 130.3 128.5 127.2 127.4 127.4 135.7 132.8 

11 OH 109.4 153.2 117.6 129.8 127.7 123.5 126.4 126.3 134.5 128.9 

12 OCH3 105.8 157.7 118.8 129.5 127.7 123.7 126.4 126.8 134.6 129.3 

13 OCOCH3 118.5 148.4 121.1 129.3 127.6 125.6 126.5 127.6 133.7 131.4 

14 NH2 107.4 142.6 117 127.8 126.4 121.1 126.8 124.5 133.5 126.6 

15 N(CH3)2 106.9 149.5 117.1 129.2 128 122.5 126.6 126.9 136 127.7 

16 NH3
+ 122.1 125.6 119.4 131.2 128.2 128.2 127.9 128.2 133.7 133.3 

17 NO2 124.6 145.9 119.2 129.7 128.1 129.9 128.1 130.1 132.5 136 

18 CN 133.8 109.2 126 129 127.8 128.9 127.5 128.2 132 134.3 

19 CHO 134.2 133.8 122.3 128.8 127.7 128.8 126.8 129.8 136 132.2 

20 COCH3 129.9 134.2 123.7 128.2 127.6 128.2 126.6 129.4 135.4 132.3 

21 COOH 130.7 128.3 125.3 128.2 127.7 128.3 126.8 129.3 132.3 135.1 

22 COOCH3 131 127.7 125.4 128.2 127.9 128.3 126.8 129.4 132.6 135.5 

23 COCl 130.5 135 125.2 128.2 127.6 128.1 126.7 129.2 133.6 132.2 

24 Si(CH3)3 133.8 137.8 129.8 127 128.1 126.2 125.7 128.1 133.1 133.8 
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In the present work, First PCA was carried out on 

data matrix using Minitab program [27]. After 

achieving PCs, PCR analysis including correlation 

ranking based-PCR (CR-PCR) was employed. In 

the CR- PCR procedure, the scores of PCs were 

entered to the PCR model, consecutively, based on 

decreasing their correlation with the 13C chemical 

shifts. R2 ≥0.75 was used to select the optimum 

number of PCs in the PCR models. For regression 

analysis, data set was separated into two groups: 

training set including 16 compounds and 

validation set including 8 compounds. Training set 

was used for the construction of the PCR models 

and then the generated models were applied to the 

validation set. Obtained models were summarized 

in Table 2 for CR-PCR method. In all 10 CR-PCR 

equations, the factor with highest correlation 

coefficient with the 13C chemical shifts was 

considered as the most significant one and, 

subsequently, the factors were introduced into the 

calibration model until R2 ≥0.75 is achieved. PCs 

with higher correlation have greater information 

about the variation in the 13C chemical shifts. 

Calculated 13C chemical shifts using CR-PCR 

equations were shown in Table 3. 

 

2.4 ANN 

Artificial neural network (ANN) is a computer 

based system derived from the simplified concept 

of the brain in which a number of nodes, called 

processing elements or neurons, are interconnected 

in a netlike structure. The ANN characteristics 

have been found to be nonlinear making them 

suitable for data processing in which the 

relationship between cause and results cannot be 

linearly defined. Three components constitute an 

ANN: the processing elements, the topology of 

connection between the nodes, and the learning 

rules. An ANN is arranged into discrete layers, 

consisting of input, hidden and output, each of 

which includes one or more individual nodes or 

processing elements. The number of input 

variables necessary for predicting the desired 

output variable determines the number of input 

nodes. The optimum number of hidden nodes and 

hidden layers is dependent on the complexity of the 

modeling problem [28]. 
 

Table 2. CR-PCR models for C1-C10 positions of β-naphthalene derivatives. 

Position  Model 

1 124.175(±1.053) -0.356 PC2(±0.114) +0.667 PC4(±0.130) +0.376 PC5(±0.155) +0.336 PC6(±0.168) 

+0.484 PC12(±0.220) -0.673 PC14 (±0.253) -0.510 PC19(±0.324) 

 

2 135.108(±1.719)-0.561 PC3(±0.194) -0.827 PC5(±0.253) -0.896 PC7(±0.278) +0.998 PC8(±0.289)-0.710 

PC10(±0.312) +1.132 PC14(±0.413) -0.661 PC17(±0.473)+0.975 PC19(±0.528)+0.913 PC21(±0.577) 

 

3 123.437(±0.572) +0.142 PC3(±0.064) +0.283 PC4(±0.071) +0.209 PC6(±0.091)+0.175 PC7(±0.092)-0.247 

PC8(±0.096) +0.272 PC12(±0.119) +0.218 PC18(±0.165) -0.417 PC19(0.175) -0.162 PC20(±0.183) -0.315 

PC21(±0.192) -0.200 PC23(±0.229) 

 

4 128.800(±0.147) +0.061 PC7(±0.024)-0.057 PC9(±0.025) -0.073 PC11(±0.027) -0.044 PC12(±0.031)-0.087 

PC14(±0.035) +0.059 PC15 (±0.037) +0.089 PC16(±0.037) +0.045 PC17(±0.040) -0.035 PC18(±0.042) 

+0.071 PC20(±0.047) 

 

5 127.783(±0.041) +0.015 PC4(±0.005) -0.025 PC10(±0.007) -0.027 PC11(±0.008) -0.224 PC14(±0.010) 

+0.028P C16(±0.011) -0.031 PC19 (±0.013) +0.047 PC20(±0.013) -0.033 PC21(±0.014) 

 

6 126.350(±0.281) +0.120 PC4(±0.035) +0.086 PC5(±0.041) +0.062 PC7(±0.045) +0.080 PC9(±0.049) -

0.074 PC11(±0.053) +0.089 PC12 (±0.059) -0.256 PC14(±0.068) +0.156 PC16(±0.072) -0.068 PC17(±.077) 

+0.095 PC20(±0.090) -0.067 PC21(±0.094) 

 

7 126.692(±0.098) +0.041 PC7(±0.016) -0.021 PC11(±0.018) +0.034 PC13(±0.023) -0.081 PC14(±0.024) 

+0.049 PC16(±0.025) +0.027 PC20 (±0.031) -0.005 PC21(±0.033) 

 

8 127.946(±0.155) -0.058 PC3(±0.017) +0.083 PC4(±0.019) +0.061 PC9(±0.027) -0.042 PC11(±0.029) 

+0.039 PC12(±0.032) -0.118 PC14 (±0.037) +0.056 PC16(±0.040) +0.060 PC20(±0.050) +0.041 

PC23(±0.062) 

 

9 133.721(±0.149) -0.058 PC9(±0.026) -0.059 PC12(±0.031) -0.061 PC16(±0.035) +0.141 PC15(±0.038) -

0.072 PC17(±0.041) -0.123 PC18 (±0.043) -0.067 PC19(±0.046) -0.170 PC22(±0.055) 

 

10 132.337(±0.324) -0.059 PC2(±0.035) +0.139 PC4(±0.040) +0.099 PC5(±0.048) -0.088 PC8(±0.055) -0.024 

PC10(±0.059) -0.071 PC11(±0.061) +0.103 PC12(±0.068) -0.170 PC14(±0.078) -0.137 PC15(±0.082) +0.170 

PC16(±0.083) +0.161 PC20(±0.104) 
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Table 3. Calculated values of 13C chemical shifts using CR-PCR method for all 10 carbon positions – Training and 

Validation sets. 
Substituent 

X 

C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 

Training           

H 123.684 134.591 124.278 128.500 128.071 126.397 126.160 127.513 134.081 133.656 

CH3 121.595 134.702 128.701 127.793 127.618 124.626 126.010 127.546 133.660 131.081 

C(CH3)3 132.990 150.155 120.905 127.649 127.598 126.839 125.699 127.972 133.174 132.919 

CH2Br 125.560 142.204 125.828 127.705 127.408 125.015 125.635 127.718 133.161 131.466 

CH2OH 122.433 141.350 119.766 128.505 127.527 124.274 126.110 127.327 133.498 132.969 

Cl 127.170 127.211 128.152 129.315 127.685 126.820 127.209 127.993 134.341 131.901 

Br 130.536 124.427 126.721 129.154 127.620 126.821 127.229 126.878 132.513 135.094 

OCH3 113.291 145.881 120.480 128.974 127.581 124.412 126.329 127.592 134.093 129.856 

OCOCH3 123.724 146.459 122.354 129.307 127.693 125.843 126.502 127.755 134.575 132.194 

NH2 103.210 133.616 117.154 127.341 126.582 121.012 125.420 124.774 133.725 125.844 

NH3
+ 117.042 120.678 120.592 131.404 128.109 128.557 128.138 128.453 133.940 131.624 

NO2 121.867 139.155 120.290 129.280 128.19 127.851 127.656 129.404 132.645 134.866 

CN 126.603 104.104 126.566 128.706 127.605 129.448 127.042 128.989 131.843 134.948 

COCH3 130.119 136.255 120.625 128.743 127.718 126.115 126.484 128.634 135.136 133.051 

COOCH3 131.127 131.072 127.638 128.423 128.085 128.261 126.592 129.157 132.673 133.004 

Si(CH3)3 132.750 140.994 132.205 127.872 128.127 126.100 126.482 128.639 133.178 132.900 

Validation           

CF3 126.686 122.087 122.872 128.770 128.156 127.961 127.048 128.381 133.461 134.963 

F 112.538 163.405 119.353 129.912 128.068 125.259 126.921 128.120 133.888 131.423 

I 134.206 100.322 130.549 130.702 128.191 127.177 126.883 126.885 136.115 133.557 

OH 114.147 140.509 117.801 128.471 127.812 124.200 126.728 125.718 133.368 129.242 

N(CH3)2 113.552 148.248 118.548 128.323 127.889 124.328 126.194 127.582 134.787 130.271 

CHO 135.776 141.205 120.079 129.244 127.700 128.313 127.153 129.803 135.519 133.209 

COOH 133.997 139.947 123.545 128.859 127.898 128.022 126.999 129.249 131.728 133.157 

COCl 125.589 132.722 127.495 128.245 127.868 128.749 126.576 128.615 134.197 132.903 

 

The PC-ANN, which combines the PCA with 

ANN and models the non-linear relationships 

between the PCs and dependent variable, was 

proposed by Gemperline to improve the training 

speed and decrease the overall calibration error 

[29]. At the present work, we used the PCs which 

were selected by CR-PCR method as input 

variables of ANN. An artificial neural network 

with back-propagation algorithm was constructed. 

Our network had an input layer, a hidden layer and 

an output layer. The input vectors were the set of 

PCs which were selected by correlation ranking 

procedure. The number of nodes in the input layer 

depended on the number of PCs in the PCR 

equations. The number of nodes in the hidden layer 

was optimized through learning procedure. The 

training, validation and test datasets including 16, 

4 and 4 compounds, respectively, were used to 

optimize the network performance. Obtained 

results using CR-PC-ANN method were shown in 

Table 4. For comparison, R2 and standard error 

(SE) of different models for training, validation 

and test sets were summarized in Table 5. 
 

2.5 DFT 

Density functional theory (DFT) calculations have 

been used extensively for calculating a wide 

variety of molecular properties such as equilibrium 

structure, charge distribution, FTIR and NMR 

spectra, and provided reliable results which are in 

agreement with experimental data [30]. DFT 

calculations were carried out using Gaussian 03 

[31]. NMR chemical shifts were computed at the 

B3LYP/6-311++G (2d, p) level using the GIAO 

method [32], but for compound no. 10, 

(B3LYP/LanL2DZ) level was used. The chemical 

shift values are given relative to TMS calculated 

values at the same level of theory. For compound 

no. 10, TMS calculated values with 

(B3LYP/LanL2DZ) level were used. Obtained 

results using DFT method were shown in Table 6. 
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Table 4. Calculated values of 13C chemical shifts using CR-PC-ANN method for all 10 carbon positions – Training, 

Validation and Test sets. 

SubstituentX C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 

TrainingH 125.082 125.594 125.131 128.178 128.103 125.901 125.695 127.839 133.428 134.223 

CH3 128.292 135.236 127.4 127.246 127.411 124.639 125.606 127.558 133.549 131.653 

C(CH3)3 121.817 148.175 122.207 127.768 127.932 124.384 125.759 127.875 133.909 132.219 

CH2Br 122.959 134.689 126.751 127.633 127.575 126.408 126.443 128.638 132.931 133.019 

CH2OH 125.545 138.099 121.093 127.918 127.516 125.719 126.340 127.800 133.239 132.982 

Cl 128.953 127.233 126.827 129.505 127.813 125.971 127.117 127.135 134.226 130.991 

Br 129.040 127.068 127.838 129.489 127.669 125.532 126.889 126.692 131.972 135.341 

OCH3 107.950 157.418 118.963 129.489 127.684 123.706 126.544 126.724 134.669 129.781 

OCOCH3 120.299 157.700 120.543 129.374 127.737 125.550 126.538 128.000 133.800 132.197 

NH2 107.350 142.502 117.067 127.874 126.347 121.201 125.688 124.291 133.522 126.693 

NH3
+ 124.309 124.303 119.160 131.063 128.109 128.102 127.885 128.055 133.806 132.938 

NO2 125.454 153.793 119.004 129.752 128.183 129.785 128.069 130.043 132.384 135.346 

CN 131.245 109.206 125.437 129.267 127.731 128.767 127.614 128.548 132.030 134.009 

COCH3 128.601 133.395 123.219 128.232 127.569 127.896 126.722 129.059 134.972 132.782 

COOCH3 133.331 127.175 124.628 128.355 127.869 128.160 126.870 129.035 132.793 134.994 

Si(CH3)3 132.762 138.047 127.452 127.296 128.009 125.985 126.303 128.316 133.039 133.121 

Validation           

CF3 126.868 132.350 121.604 129.090 128.077 128.088 127.369 129.084 132.372 134.886 

I 132.719 88.9821 134.614 130.279 128.498 127.162 127.395 127.353 135.700 133.504 

N(CH3)2 106.944 149.500 116.744 129.150 128.013 122.540 126.629 126.889 135.931 127.479 

COCl 133.593 130.725 124.980 128.167 127.601 128.018 126.700 129.026 133.582 132.913 

Test           

F 109.994 160.800 115.901 130.354 128.000 125.097 126.976 127.497 134.306 130.393 

OH 113.520 152.269 117.530 129.784 127.676 123.498 126.399 126.323 134.470 128.866 

CHO 135.926 129.562 122.116 128.803 127.707 128.573 126.795 129.793 135.904 131.646 

COOH 133.869 127.383 124.838 128.184 127.700 128.259 126.795 129.326 132.307 134.425 

 

Table 5. The statistical parameters for CR-PCR, CR-PC-ANN, DFT/GIAO and ChemDraw program. 
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Table 6. Calculated values of 13C chemical shifts using DFT/GIAO method. 

Substituent 

X 

C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 

H 133.173 131.836 131.836 133.174 133.173 131.836 131.835 133.175 141.377 141.377 

CH3 133.902 142.833 133.978 133.791 134.130 130.301 132.036 133.367 140.191 138.056 

C(CH3)3 130.028 155.898 131.419 133.932 133.574 130.808 131.692 134.564 140.024 137.840 

CH2Br 129.507 140.812 130.665 133.924 134.198 131.873 132.513 132.541 139.207 139.573 

CH2OH 128.412 145.052 128.771 133.617 132.982 131.864 130.774 134.307 139.702 138.920 

CF3 134.486 136.495 127.434 134.143 134.246 133.756 132.925 135.793 139.111 140.614 

F 117.488 171.313 121.927 136.279 134.576 130.870 133.121 133.383 141.917 137.798 

Cl 132.764 148.491 133.036 135.099 133.790 132.109 133.156 133.547 142.018 139.260 

Br 136.325 146.165 135.837 135.035 134.209 132.267 132.966 133.521 140.976 138.332 

I 140.509 146.082 138.644 133.255 132.532 131.206 131.652 131.629 136.387 133.859 

OH 115.562 162.126 120.135 135.443 134.039 129.019 132.900 132.612 141.939 134.943 

OCH3 118.860 165.283 114.507 135.229 133.979 128.926 132.612 132.293 141.667 135.013 

OCOCH3 123.894 157.817 128.374 134.500 134.200 131.445 132.423 133.911 140.623 137.667 

NH2 136.544 149.898 135.253 133.729 133.740 131.293 131.968 134.067 140.580 138.324 

N(CH3)2 111.131 154.293 119.007 135.115 133.944 127.162 132.329 132.446 141.790 132.925 

NH3+ 125.952 125.970 117.404 142.975 136.452 140.686 140.323 134.630 138.366 140.833 

NO2 124.979 159.361 124.325 135.982 134.599 133.419 133.941 135.116 139.130 138.477 

CN 141.386 116.468 134.084 135.020 134.625 134.919 133.379 135.566 139.543 141.540 

CHO 135.622 139.342 134.645 134.456 133.999 134.795 132.632 137.934 139.345 143.233 

COCH3 136.958 139.106 131.191 133.703 133.789 134.189 132.407 137.975 138.677 141.531 

COOH 141.168 131.806 132.308 133.501 133.977 134.364 132.350 137.168 138.594 141.769 

COOCH3 140.286 133.836 131.926 133.150 133.903 133.920 132.234 137.080 138.666 141.366 

COCl 140.611 134.996 135.002 134.175 134.153 136.124 133.194 137.441 137.949 142.585 

Si(CH3)3 139.810 144.815 135.842 133.207 134.737 131.809 131.588 133.702 139.703 140.294 

 

3. RESULT AND DISCUSSION 

Table 1 lists the names of the compounds used in 

this study and their corresponding experimental 
13C chemical shift values. In this list, the 

experimental 13C chemical shift values for 10 

carbon positions have been accessed. In order to 

find a correlation between MIA descriptors and 

these spectroscopic data, after eliminating the 

descriptors with zero variance, 887 MIA 

descriptors were remained. Then, PCA was 

applied on the descriptors data matrix. Twenty-

three PCs were generated which were considered 

as the input variables of PCR and PC-ANN 

models. For each carbon position, separate PCR 

models based on correlation ranking were 

obtained. Obtained models were shown in Table 2. 

Calculated values of 13C NMR chemical shifts 

using these CR-PCR equations were indicated in 

Table 3 for training and validation sets, 

respectively. The statistical parameters of these 

models were summarized in Table 5. To increase 

the predictive ability of the obtained models, a 

nonlinear modeling method was employed. 

Typically, superior models can be found using 

ANNs because they implement non-linear 

relationships and because they have more 

adjustable parameters than the linear models. 

Therefore, we suggested the use of ANN as the 

non-linear model. The order of PCs based on their 

decreasing correlation was shown in equations of 

Table 2. Thus, these subsets of PCs were used as 

input of ANN models. The calculated values of 13C 

chemical shifts using ANN models were 

represented in Table 4 for training, validation and 

test sets, respectively. R2 and standard error (SE) 

values using two different methods (CR-PCR and 

CR-PC-ANN) were summarized in Table 5. As can 

be seen from this table, CR-PC-ANN model shows 

more predictive ability than the PCR models. This 

indicates that there are nonlinear relationship 

between PCs and 13C chemical shifts. Plots of 

experimental 13C chemical shifts versus calculated 

values using CR-PC-ANN method for all 10 

carbon positions are shown in Fig. 2 (a–j), 

respectively. As it is observed, obtained models by 

the CR-PC-ANN method indicate high qualities. 

This means that there are non-linear relationships 

between the proposed MIA descriptors and the 13C 

chemical shifts of the β-naphthalene derivatives. In 

order to compare the predictive ability of the MIA-

QSPR model with a standard procedure for 13C 

chemical shift calculations, the GIAO method [32] 

was utilized to compute the spectroscopic data for 

the studied compounds. Obtained results using 

GIAO method were shown in Table 6. The results 

of this table show that MIA-QSPR predictions are 

significantly better than the GIAO method. Also, 
13C chemical shifts of the studied compounds were 

calculated using ChemDraw program [33].  
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Fig. 2. (a-j): Plot of experimental 13C chemical shifts of β-naphthalene derivatives against the calculated values using CR-

PC-ANN model for C1-C10 positions, respectively. 
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Table 7. Calculated values of 13C chemical shifts using ChemDraw program. 
Substituent 

X 

C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 

H 128 125.9 125.9 128 128 125.9 125.9 128 133.6 133.6 

CH3 127 135.3 128 127.3 127.6 125.1 126 127.5 133.7 131.8 

C(CH3)3 122.9 148.4 124.7 127.7 128.1 125.5 126 127.5 134.2 132.5 

CH2Br 127 135.2 128 127.3 127.6 125.1 126 127.5 133.7 131.8 

CH2OH 127 135.2 128 127.3 127.6 125.1 126 127.5 133.7 131.8 

CF3 126.3 127.2 121.8 129.2 128.2 128.6 127.7 129.2 132.7 135.1 

F 111 161 116.1 130.5 128.1 125.5 127.3 127.5 134.5 130.8 

Cl 126.7 131.8 126.8 129.6 127.9 126.4 127.3 127 134.5 131.9 

Br 130.1 119.9 129.4 129.6 127.8 126.4 127 127 133.6 131.6 

I 137.2 91.8 134.9 130.4 128.6 127.5 127.7 127.5 135.9 133 

OH 109.5 155.8 117.6 129.9 127.8 123.8 126.7 126.4 134.7 129.1 

OCH3 105.9 157.2 118.8 129.6 127.8 124 126.7 126.9 129.4 129.5 

OCOCH3 118.6 148.6 121.1 129.4 127.7 125.9 126.8 127.7 133.9 131.6 

NH2 108.4 142.7 118.1 129 126.5 121.4 125.3 124.6 133.7 126.8 

N(CH3)2 105.6 146.3 116.1 130.4 128.1 122.8 126.9 127 136.2 127.9 

NH3
+ 128.1 126 126 128.1 128.1 126.2 126.2 128.1 133.8 132.8 

NO2 123.6 145.2 118.9 127.9 128.2 130.2 128.4 130.2 131.7 136.2 

CN 134 109.1 126 129.1 127.9 129.2 127.8 128.3 132.2 134.5 

CHO 134.2 133.3 122.8 128.9 127.8 129.1 127.1 129.9 133.1 132.4 

COCH3 129.9 134.2 124.2 128.3 127.7 128.5 126.9 129.5 132.5 132.5 

COOH 130.4 127.1 125.8 128.3 127.8 128.6 127.1 129.4 132.5 135.3 

COOCH3 130.7 128 125.9 128.3 128 128.6 127.1 129.5 132.8 135.7 

COCl 128.6 134.2 124.2 128.3 127.7 128.5 126.9 129.5 135.6 132.5 

Si(CH3)3 133.8 137.8 129.8 127.1 128.2 126.5 126 128.2 133.3 134 

 

Obtained values using ChemDraw program were 

shown in Table 7. For comparison, statistical 

parameters of these values were indicated in Table 

5. As can be seen from this table, calculated 13C 

chemical shifts using CR-PC-ANN models are 

more accurate than the calculated values by 

ChemDraw program. 

 

4. CONCLUSION 

The main aim of the present work was to 

investigate relationship between 2D images and 
13C chemical shifts. Obtained results indicated that 

though MIA descriptors do not have a direct 

physicochemical meaning, but may provide useful 

information and are capable to predict the 13C 

chemical shifts of studied compounds.The MIA-

QSPR results presented the advantage of being 

based on a calibration model, and thus the model 

may be validated and predictions performed more 

reliably.  
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