[1] C. Matsubara, N. Kawamoto and K. Takamura, Oxo [5,10,15,20-tetra(4-pyridyl) porphyrinato] titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide, The Analyst 117 )11( )1992) 1781–1784.
[2] B.
Paital,A modified fluorimetric method for determination of hydrogen peroxide using homovanillic acid oxidation principle,
BioMed. Res. Int. 2014 (2014) 1-8.
[3] M.
Tarvin, B.
McCord, K.
Mount, K.
Sherlach and ML.
Miller, Optimization of two methods for the analysis of hydrogen peroxide: high performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode,
J. Chromatogr. A 1217 (48) (2010) 7564–7572.
[5] E.C.
Hurdis and H. Romeyn, Accuracy of determination of hydrogen peroxide by cerate oxidimetry,
Anal. Chem. 26 (1954) 320–325.
[6] S. Yang, G. Li, G. Wang, J. Zhao, M. Hu and L. Qu, A Novel nonenzymatic H2O2 sensor based on cobalt hexacyanoferrate nanoparticles and graphen composite modified electrode, Sens. Actuators B 208 (2015) 593-599.
[7] J.H. Han, E. Lee, S. Park, R. Chang and T.D. Chung, Effect of nanoporous structure on enhanced electrochemical reaction, J. Phys. Chem. C 114 (2010) 9546-9553.
[8] M.D. Hughes, Y. Xu, P. Jenkins, P. McMorn, P. Landon, D.I. Enache, A.F. Carley, G. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnston, K. Griffin and C.J. Kiely, Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions, Nature 437 (2005) 1132-1135.
[9] C.X. Lei, S.Q. Hu, G.L. Shen and R.Q. Yu, Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide, Talanta 59 (2003) 981-988.
[10] Y.H. Tang, Y. Cao, S.P. Wang, G.L. Shen and R.Q. Yu, Surface attached-poly(acrylic acid) network as nanoreactor to in-situ synthesize palladium nanoparticles for H2O2 sensing, Sens. Act. B 137 (2009) 736–740.
[11] P. Xiao, B.B. Garcia, Q. Guo, D.W. Liu and G.Z. Cao, TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing, Electrochem. Commun. 9 (2007) 2441- 2447.
[12] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.
[13] M.J. Moghaddam, S. Taylor, M. Gao, S. Huang, L. Dai and M. J. McCall, Highly Efficient Binding of DNA on the Sidewalls and Tips of Carbon Nanotubes Using Photochemistry, Nano Lett. 4 (2004) 89–93.
[14] J. Wang, M. Li, Z. J. Shi, N. Li and Z. Gu, Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes, Anal. Chem. 74 (2002) 1993–1997.
[15] G. Liu and Y. Lin, Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes,
Electrochem. Commun. 8 (2006) 251–256.
[16] G.A. Rivas, M.D. Rubianes, M.C. Rodríguez, N.F. Ferreyra, G.L. Luque, M L. Pedano, S.A. Miscoria and C. Parrado, Carbon nanotubes for electrochemical biosensing, Talanta 74 (2007) 291–307.
[17] P.A. Prakash, U. Yogeswaran and S.M. Chen, Direct electrochemistry of catalase at multiwalled carbon nanotubes-nafion in presence of needle shaped DDAB for H2O2 sensor, Talanta 78 (2009) 1414–1421.
[18] J.W. Shie, U.Yogeswaran and S.M. Chen, Haemoglobin immobilized on nafion modified multi-walled carbon nanotubes for O2, H2O2 and CCl3COOH sensors, Talanta 78 (2009) 896–902.
[19] K. Cui, Y. Song, Y. Yao, Z. Huang and L. Wang, A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode, Electrochem. Commun. 10 (2008) 663–667.
[21] G. Flatgen, S. Wasle, M. Lubke, C. Eickes, G. Radhakrishnan, K. Doblhofer and G. Ertl, Autocatalytic mechanism of H
2O
2 reduction on Ag electrodes in acidic electrolyte: experiments and simulations,
Electrochim. Acta 44 (1999) 4499-4506.
[22] J. Yang, J.Y. Lee, L.X. Chen and H.P. Too, A phase-transfer identification of core-shell structures in Ag-Pt nanoparticles, J. Phys. Chem. B 109 (2005) 5468-5472.