با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 آزمایشگاه جداسازی فازها و تزریق جریان، گروه شیمی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

2 آزمایشگاه جداسازی فازها و تزریق جریان، گروه شیمی، دانشکده علوم، دانشگاه زنجان، زنجان، ایرانِ؛ دانشگاه علمی کاربردی، مرکز کالسیمین، زنجان، ایران

چکیده

یک روش ساده، جدید، صحیح و گزینش­پذیر برای اندازه‌گیری مقادیر ناچیز یون مس در نمونه­های آبی و خاک پیشنهاد شده است. روش بر اساس جداسازی و پیش­تغلیظ یون مس بر روی نانو­سیلیکای اصلاح­شده توسط ستیل تری متیل آمونویم برومید به عنوان عامل فعال­کننده سطح و ایندان-1و2و3-تری اون 1و2-دی اکسیم به عنوان عامل کمپلکس­دهنده می­باشد. مس جذب­شده بر روی نانوجاذب با استفاده از 1.5 میلی لیتر از محلول 0.1 مولار نیتریک اسید شسته شده و سپس بوسیله دستگاه جذب اتمی شعله­ای تعیین مقدار می­شود. فرآیند سنتز این نانوجاذب تشریح شده و با استفاده از تکنیک­های طیف بینی زیر قرمز تبدیل فوریه FTIR، پراش اشعه ایکس XRD و تصویربردای میکروسکوپی روبشی گرمایی TEM تایید شده است. علاوه بر این، چندین پارامتر تجزیه‌ایی تاثیر گذار بر فرآیند بررسی و بهینه شده‌اند. تحت بهترین شرایط بهینه حاصله، بیشترین ظرفیت جذب، فاکتور غنی­سازی و حد تشخیص روش به ترتیب 04/7 میلی گرم بر گرم، 3/333 و 4/4 میکروگرم بر لیتر بدست آمدند. انحراف استاندارد نسبی روش پیش تغلیظ (RSD) برای 7 تکرار 0.28% حاصل شد و منحنی درجه‌بندی محدوده خطی خوبی با مقدار ضریب رگرسیون 997/0 حاصل شد. در پایان، انعطاف­پذیری و کارآیی روش با استفاده از اندازه‌گیری یون مس (II) در چندین نمونه آب و خاک ارزیابی شده و نتایج رضایت­بخشی بدست آمد.

کلیدواژه‌ها

 
[1]     M. Hosseini and N. Dalali, On-line solid-phase extraction coupled to flame atomic absorption spectroscopy for determination of trace amounts of copper (II) ion in water samples, Indian J. Chem. Technol. 19 (2011) 337-341.
[2]     N. Dalali, L. Farhangi and M. Hosseini, Solid phase extraction for selective separation/preconcentration of copper using N-benzoyl N-phenylhydroxyl amine as sorbent modifier, Indian J. Chem. Technol. 18 (2011) 137-187.
[3]     J.S. Espana, E.L. Pamo, E.S. Pastor, J.R. Andres and J.A. M. Rubi, The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Aquat. Geochem. 12 (2006) 269–298.
[4]       M.G. Fonseca, M.M. Oliveora, L.N.H. Arakaki, J.G.P. Espinola and C. Airoldi, Natural vermiculite as an exchanger support for heavy cations in aqueous solution, J. Colloid Interface Sci. 285 (2005) 50–55.
[5]     O. Arous, A. Gherrou and H. Kerdjoudj, Removal of Ag(I), Cu(II) and Zn(II) ions with a supported liquid membrane containing cryptands as carriers, Desalination 161 (2004) 295–303.
[6]     U.B. Ogutveren, S. Koparal and E. Ozel, Electrodialysis for the removal of copper ions from wastewater, J. Environ. Sci. Health A 32 (1997) 749–761.
[7]     S.H. Hasan and P. Srivastava, Batch and continuous biosorption of Cu2+ by immobilized biomass of Arthrobactersp, J. Environ. Manage. 90 (2009) 3313–3321.
[8]     S.M. Zhu, N. Yang and D. Zhang, Poly(N,N-dimethylaminoethyl methacrylate modification of activated carbon for copper ions removal, Mater. Chem. Phys. 113 (2009) 784–789.
[9]     G.P. Rao, C. Lu and F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review, Sep. Purif. Technol. 58 (2007) 224–231.
[10] A.H. Chen, S.C. Liu, C.Y. Chen and C.Y. Chen, Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the cross linked chitosan with epichlorohydrin, J. Hazard. Mater. 154 (2008) 184–191.
[11] S.R. Shukla, V.G. Gaikar, R.S. Pai and U.S. Suryavanshi, Batch and column adsorption of Cu(II) on unmodified and oxidized coir, Sep. Sci. Technol. 44 (2009) 40–62.
[12]  P. Yin, Q. Xu, R.J. Qu and G.F. Zhao, Removal of transition metal ions from aqueous solutions by adsorption onto a novel silica gel matrix composite adsorbent, J. Hazard. Mater.169 (2009) 228–232.
[13] M. Dogan, A. Turkyilmaz, M. Alkan and O. Demirbas, Adsorption of copper (II) ions onto sepiolite and electrokinetic properties, Desalination 238 (2009) 257–270.
[14] R. Rangsivek and M.R. Jekel, Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for storm water runoff  treatment, Water Res. 39 (2005) 4153–4163.
[15] L.C. Zhou, Y.F. Li, X. Bai and G.H. Zhao, Use of microorganisms immobilized  composite polyurethane foam to remove Cu(II) from aqueous solution, J. Hazard. Mater. 167 (2009) 1106–1113.
[16] H. Yong-Meia , C. Mana and H. Zhong-Bob, Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater. 184 (2010) 392–399.
[17] P.K. Jal, R.K. Dutta, M. Sudershan, A. Saha, S.N. Bhattacharyya, S.N. Chintalapudi and B.K. Mishra, Talanta 55 (2001) 233.
[18] S.B. Savvin and A.V. Mikhailova, Modified and immobilized organic reagents,  Anal. Chim. 51 (1996) 42-49.
[19] V.V. Sukhan, O.A. Zaporozhets, N.A. Lipkovskaya, L.B. Pogasi and A.A. Chuiko, J. Anal. Chim. 49 (1994) 700.
[20] V.M. Ostrovskaya, Anal. Chim. 32 (1977) 1820.
[21] V.A. Tertykh and L.A. Belyakova,  Khimicheskie Reaktsiis Uchestiem Poverkhnosti Kremnezema (Chemical Reaction with Participation of the Slica Surface, Noukova, Dumka, Kiev (1991).
[22] M. Sladkova, B. Vlckova, I. Pavel, K. Siskova and M. Slouf, Surface-enhanced Raman scattering from a single molecularly bridged silver nanoparticle aggregate, J. Mol. Struct. 924–926 (2009) 567–570.
[23] N. Duxin, M.P. Pileni, W. Wernsdorfer, B. Barbara, A. Benoit and D. Mailly, Magnetic properties of an individual Fe−Cu−B nanoparticle, Langmuir 16 (2000) 11–14.
[24] S. Sivasankar and S. Chu, Optical bonding using silica nanoparticle sol−gel chemistry, Nano Lett. 10 (2007) 3031–3034.
[25] S.D. Bhagat, Y.H. Kim, K.H. Suh, Y.S. Ahn, J.G. Yeo and J.H. Han, Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels, Micro. Meso. Mater. 112 (2008) 504–509.
[26] Y.L. Lee, Z.C. Du, W.X. Lin and Y.M. Yang, Monolayer behavior of silica particles at air/water interface: a comparison between chemical and physical modifications of surface, J. Colloid Interface Sci. 296 (2006) 233–241.
[27] Y. Ouabbas, A. Chamayou, L. Galet, M. Baron, G. Thomas, P. Grosseau, B. Guilhot, Surface modification of silica particles by dry coating: characterization and powder aging, Powder Technol. 190 (2009) 200–209.
[28] C. Oh, Y.G. Lee, C.U. Jon and S.G. Oh, Synthesis and characterization of hollow silica microspheres functionalized with magnetic particles using w/o emulsion method, Colloid Surf. A 337 (2009) 208–212.
[29] M. Castellano, L. Conzatti, G. Costa, L. Falqui, A. Turturro, B. Valenti and F. Negroni, Surface modification of silica:Thermodynamic aspects and effect on elastomer reinforcement, Polymer 46 (2005) 695–703.
[30] S. Sun, C. Li, L. Zhang, H.L. Du and J.S. Burnell-Gray, Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites, Eur. Polym. J. 42 (2006) 1643–1652.
[31] L. Xue, J. Li, J. Fu, Y. Han, Super-hydrophobicity of silica nanoparticles modified with vinyl groups, Colloid Surf. A 338 (2009) 15–19.
[32] P. Rangsunvigit, P. Imsawatgul, N. Na-ranong, J.H. O’Haver and S. Chavadej, Mixed surfactants for silica surface modification by admicellar polymerization using a continuous stirred tank reactor, Chem. Eng. J. 136 (2008) 288–294.
[33] W.M. Jiao, A. Vidal, E. Papirer and J.B. Donnet, Modification of silica surfaces by grafting of alkyl chains: Particle/particle interactions: rheology of silica suspensions in low molecular weight analogs of elastomers, Colloids Surf. 40 (1989) 279–291.
[34] S. Swamp and C.K. Schoff, A survey of surfactants in coatings technology, Prog. Org. Coat. 23 (1993) 1–22.
[35] I. Cherkaoui, V. Monticone, C. Vaution, and C. Treiner, Surface modification of silica particles by a cationic surfactant: adsolubilization of steroids from aqueous solutions, Int. J. Pharm. 176 (1998) 111–120.
[36] Y. Otsubo, M. Sekine and S. Katayama, Effect of surface modification of colloidal silica on the electrorheology of suspensions, J. Colloid Interface Sci. 146 (1991) 395–404.
[37] A.P. Rao, A.V. Rao and G.M. Pajonk, Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents, Appl. Surf. Sci. 253 (2007) 6032–6040.
[38] S. Kim, E. Kim, S. Kim and W. Kim, Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate, J. Colloid Interface Sci. 292 (2005) 93–98.
[39] M. Hosseini, N. Dalali, A. Karimi and K. Dastanra, Solid phase extraction of copper, nickel, and cobalt in water samples after extraction using surfactant coated alumina modified with indane-1,2,3-trione 1,2-dioxime and determination by flame atomic absorption spectrometry, Turk. J. Chem. 34 (2010) 805-814.