[1] R. Costa, Newly introduced sample preparation techniques: towards miniaturization, Crit. Rev. Anal. Chem. 44 (2014) 299-310.
[2] J. Pan, C. Zhang, Z. Zhang and G. Li, Review of online coupling of sample preparation techniques with liquid chromatography, Anal. Chim. Acta 815 (2014) 1-15.
[3] Z.H. Liu, G.N. Lu, H. Yin, Z. Dang, H. Littier and Y. Liu, Sample-preparation methods for direct and indirect analysis of natural estrogens, Trends Anal. Chem. 64 (2015) 149-164.
[4] K.M. Dimpe and P.N. Nomngongo, Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices, Trends Analyt. Chem. 82 (2016) 199-207.
[5] M.I. Leong, M.R. Fuh and S.D. Huang, Beyond dispersive liquid-liquid microextraction, J. Chromatog. A 1335 (2014) 2-14.
[6] N. Campillo, P. Viñas, J. Šandrejová and V. Andruch, Ten years of dispersive liquid–liquid microextraction and derived techniques, Appl. Spectrosc. Rev. 52 (2017) 267-415.
[7] H. Yan and H. Wang, Recent development and applications of dispersive liquid–liquid microextraction, J. Chromatog. A 1295 (2013) 1-15.
[8] J. Šandrejová, N. Campillo, P. Viñas and V. Andruch, Classification and terminology in dispersive liquid–liquid microextraction.” Microchem. J. 127 (2016) 184-186.
[9] C.V. Ramos-Dorta, V. Pino and A.M. Afonso, Monitoring polycyclic aromatic hydrocarbons in seawaters and wastewaters using a dispersive liquid–liquid microextraction method, Environ. Technol. 34 (2013) 607-616.
[10] Y. Du and S. Guo, Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications, Nanoscale 8 (2016) 2532-2543.
[11] X. Wang, L. Wu, J. Cao, X. Hong, R. Ye, W. Chen and T. Yuan, Magnetic effervescent tablet-assisted ionic liquid dispersive liquid–liquid microextraction of selenium for speciation in foods and beverages, Food Addit. Contam. A 33 (2016) 1190-1199.
[12] C. Vakh, E. Evdokimova, A. Pochivalov, L. Moskvin and A. Bulatov, Effervescence assisted dispersive liquid–liquid microextraction followed by microvolume UV-Vis spectrophotometric determination of surfactants in water, Toxicol. Environ. Chem. 99 (2017) 613-623.
[13] K. Hola, . Zhang, Y. Wang, E.P. Giannelis, R. Zboril and A.L. Rogach, Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics, Nano Today 9 (2014) 590-603.
[14] Y. Du and S. Guo, Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications, Nanoscale 8 (2016) 2532-2543.
[15] S.Y. Lim, W. Shen and Z. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev. 44 (2015) 362-381.
[16] P. Zuo, P., X. Lu, Z. Sun, Y. Guo and H. He, A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots, Microchim. Acta 183 (2016) 519-542.
[17] J.D. Rodgers and N.J. Bunce, Treatment methods for the remediation of nitroaromatic explosives, Water Res. 35 (2001) 2101-2111.
[18] K.S. Ju and R.E. Parales, Nitroaromatic compounds, from synthesis to biodegradation, Microbiol. Mol. Biol. Rev. 74 (2010) 250-272.
[19] P. Kovacic and R. Somanathan, Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism, J. Appl. Toxicol. 34 (2014) 810-824.
[20] U. Ochsenbein, M. Zeh and J.D. Berset, Comparing solid phase extraction and direct injection for the analysis of ultra-trace levels of relevant explosives in lake water and tributaries using liquid chromatography-electrospray tandem mass spectrometry, Chemosphere 72 (2008) 974-980.
[21] M. Berg, J. Bolotin and T.B. Hofstetter, Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS, Anal. Chem. 79 (2007) 2386-2393.
[22] J. Lee, S. Park, S.G. Cho, E.M. Goh, S. Lee, S.S. Koh and J. Kim, Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry–mass spectrometry, Talanta 120 (2014) 64-70.
[23] K. Badjagbo and S. Sauvé, Mass spectrometry for trace analysis of explosives in water, Crit. Rev. Anal. Chem. 42 (2012) 257-271.
[24] R.C. Stringer, S. Gangopadhyay and S.A. Grant, Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer, Anal. Chem. 82 (2010) 4015-4019.
[25] T. Gan and S. Hu, Electrochemical sensors based on graphene materials, Microchim. Acta 175 (2011) 1-19.
[26] J. Feltes, K. Levsen, D. Volmer and M. Spiekermann, Gas chromatographic and mass spectrometric determination of nitroaromatics in water, J. Chromatogr. A 518 (1990) 21-40.
[27] R. Tachon, V. Pichon, M.B. Le Borgne and J.J. Minet, Comparison of solid-phase extraction sorbents for sample clean-up in the analysis of organic explosives, J. Chromatogr. A 1185 (2008) 1-8.
[28] J. Pawliszyn and S. Pedersen-Bjergaard, Analytical microextraction: current status and future trends, J. Chromatogr. Sci. 44 (2006) 291-307.
[29] J. Moreda-Piñeiro and A. Moreda-Piñeiro, Recent advances in combining microextraction techniques for sample pre-treatment, Trends Analyt. Chem. 71 (2015) 265-274.
[30] A. Larki, A novel application of carbon dots for colorimetric determination of fenitrothion insecticide based on the microextraction method, Spectrochim. Acta A 173 (2017) 1-5.
[31] C. Carrillo-Carrión, B.M. Simonet and M. Valcárcel, Carbon nanotube–quantum dot nanocomposites as new fluorescence nanoparticles for the determination of trace levels of PAHs in water, Anal. Chim. Acta 652 (2009) 278-284.
[32] H. Farahani, P. Norouzi, R. Dinarvand and M.R. Ganjali, Development of dispersive liquid–liquid microextraction combined with gas chromatography–mass spectrometry as a simple, rapid and highly sensitive method for the determination of phthalate esters in water samples, J. Chromatogr. A 1172 (2007) 105-112.
[33] M. Rahimi-Nasrabadi, M.M. Zahedi, S.M. Pourmortazavi, R. Heydari, H. Rai, J. Jazayeri and A. Javidan, Simultaneous determination of carbazole-based explosives in environmental waters by dispersive liquid-liquid microextraction coupled to HPLC with UV-Vis detection, Microchim. Acta 177 (2012) 145-152.
[34] N. Pourreza, S. Rastegarzadeh and A. Larki, Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV-Vis spectrophotometry, Talanta 134 (2015) 24-29.
[35] H. Farahani, M. Shokouhi, M. Rahimi-Nasrabadi and R. Zare-Dorabei, Green chemistry approach to analysis of formic acid and acetic acid in aquatic environment by headspace water-based liquid-phase microextraction and high-performance liquid chromatography, Toxicol. Environ. Chem. 98 (2016) 714-726.
[36] J.A. Ocaña-González, R. Fernández-Torres, M.Á. Bello-López and M. Ramos-Payán, New developments in microextraction techniques in bioanalysis: a review, Anal. Chim. Acta 905 (2016) 8-23.
[37] A. Zgoła-Grześkowiak and T. Grześkowiak, Dispersive liquid-liquid microextraction, Trends Analyt. Chem. 30 (2011) 1382-1399.