[1] O.S. Bains, T.A. Grigliatti, R.E. Reid and K.W. Riggs, Naturally occurring variants of human aldo-keto reductases with reduced in vitro metabolism of daunorubicin and doxorubicin, J. Pharmacol. Exp. Ther. 335 (2010) 533-345.
[2] F. Hoffmann and E. Maser, Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily, Drug Metab. Rev. 39 (2007) 87-144.
[3] T. Matsunaga, S. Shintani and A. Hara, Multiplicity of mammalian reductases for xenobiotic carbonyl compounds, Drug Metab. Pharmacokinet. 21 (2006) 1-18.
[4] P. Malatkova, E. Maser and V. Wsol, Human carbonyl reductases, Curr. Drug Metab. 11 (2010) 639-658.
[5] J.A. Doorn, E. Maser, A. Blum, D.J. Claffey and D.R. Petersen, Human carbonyl reductase catalyzes reduction of 4-oxonon-2-enal, Biochemistry 43 (2004) 13106-13114.
[6] D. Hu, N. Miyagi, Y. Arai, T. Oguri, T. Miura, T. Nishinaka T, et al. Synthesis of 8-hydroxy-2-iminochromene derivatives as selective and potent inhibitors of human carbonyl reductase 1, Org. Biomol. Chem. 13 (2015) 7487-7499.
[7] E. Arkan, M. Shahlaei, A. Pourhossein, K. Fakhri and A. Fassihi, Validated QSAR analysis of some diaryl substituted pyrazoles as CCR2 inhibitors by various linear and nonlinear multivariate chemometrics methods, Eur. J. Med. Chem. 45 (2010) 3394-3406.
[8] M. Shahlaei, A. Madadkar-Sobhani, L. Saghaie and A. Fassihi, Application of an expert system based on Genetic Algorithm–Adaptive Neuro-Fuzzy Inference System (GA–ANFIS) in QSAR of cathepsin K inhibitors, Expert Syst. Appl. 39 (2012) 6182-6191.
[9] A.R. Katritzky, V.S. Lobanov and M. Karelson, QSPR: the correlation and quantitative prediction of chemical and physical properties from structure, Chem. Soc. Rev. 24 (1995) 279-287.
[10] R. Kumar, M. Son, R. Bavi, Y. Lee, C. Park, V. Arulalapperumal, et al. Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling,
Acta Pharmacol. Sin. 36 (2015) 998-1012.
[11] V.K. Agrawal, S. Bano, C.T. Supuran and P.V.Khadikar , QSAR study on carbonic anhydrase inhibitors: aromatic/heterocyclic sulfonamides containing 8-quinoline-sulfonyl moieties, with topical activity as antiglaucoma agents, Eur. J. Med .Chem. 39 (2004) 593-600.
[12] R. Kumar, P. Malla, A. Verma and M. Kumar, Design of potent human steroid 5α-reductase inhibitors: 3D-QSAR CoMFA, CoMSIA and docking studies. Med. Chem. Res. 22 (2013) 4568-4582.
[13] R.L. Sawant, S.S.Ramdin and J.B. Wadekar, Synthesis, QSAR and docking studies of 5HT2A receptor antagonising thiazolo[3,2-a]pyrimidines as antipsychotic agents, Marmara Pharmaceut. J. 18 (2014) 109-116.
[17] N. Madadi Mahani, A. Mohadesi Zarandi and A. Horzadeh, QSAR studies of novel iminochromene derivatives as carbonyl reductase 1 (CBR1) inhibitors, Marmara Pharm. J. 22 (2018) 227-236.
[18] Talete srl, Dragon (ver. 5.4), Milano, Italy. Web site: www.talete.mi.it/products/ software. htm
[19] R.Todeschini and V.Consonni Handbook of Molecular Descriptors, Wiley-VCH, Weinheim (2000) pp. 667-690.
[20] S. Wold and L. Ericksson, Partial least squares projections to latent structures (PLS) in chemistry. In Encyclopedia of computational chemistry, Ragu & Schleyer, P. (ed.), John Wiley & Sons, ltd. Chichester(2002).
[21] V. Consonni, D. Ballabioand and R. Todeschini, Comments on the definition of the Q
2 parameter for QSAR validation
, J. Chem. Inf. Model. 49 (2009) 1669-1678.
[22] V. Consonni, D. Ballabioand and R. Todeschini , Evaluation of model predictive ability by external validation techniques, J. Chemometrics. 24 (2010) 194-201.
[23] L. M. Shi, H .Fang, W.Tomg, J. Wu, R. Perkins, R.M. Blair, W.S.Branham, S.L.Dial, C.L. Moland and D.M. Sheenan, QSAR Models Using a Large Diverse Set of Estrogens, J. Chem. Inf. Comput .Sci. 41 (2001) 186–195.
[24] D.M. Hawkins, the Problem of Overfitting, J. Chem. Inf. Comput. Sci. 44 (2004) 1–12.