In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, 51, Deh Tor, Super Highway, Gadap Road, Karachi, Pakistan

Abstract

 
Amikacin (AM) belongs to the family of aminoglycoside antibiotics. It is a broad spectrum antibiotic, effective against both Gram-negative and Gram-positive bacterial infections. The chemical structure of AM consists of hydroxyl (OH), glucopyranosyl and amino (NH2) groups. However, the lack of chromophore in the AM structure made it difficult to detect it in the UV-visible region (200–800 nm). Therefore, derivatization of AM is carried out to introduce a chromophore in its structure which helps in its detection in the UV-visible region. Several methods have been developed and reported for the determination of AM in pharmaceutical and biological samples. These methods include chromatographic techniques such as thin layer chromatography (TLC), liquid chromatography (LC), hydrophilic interaction liquid chromatography (HILC), high performance liquid chromatography (HPLC), ultra-high performance liquid chromatography (UHPLC), ion chromatography (IC); spectrometry such as UV-visible spectrometry, spectrofluorimetry, nuclear magnetic resonance (NMR) spectrometry, mass spectrometry (MS); chemiluminescence; Rayleigh scattering method; electrochemical methods such as polarography, cyclic voltammetry, amperometry; immunoassay and microbial assay. This review highlights the application of these methods in the analysis of AM in pharmaceutical and biological samples.

Keywords

 
[1]   M. Sekkat, H. Fabre, M. Simeon de Buochberg and B. Mandrou, Determination of aminoglycosides in pharmaceutical formulations–I. Thin-layer chromatography, J. Pharm. Biomed Anal. 7 (1989) 883–892.
[2]   B. Wichert, H. Schreier and H. Derendorf Sensitive liquid chromatography assay for the determination of amikacin in human plasma, J. Pharm. Biomed. Anal. 9 (1991) 251–224.
[3]   C.Y. Lu and C.H. Feng, Micro-scale analysis of aminoglycoside antibiotics in human plasma by capillary liquid chromatography and nanospray tandem mass spectrometry with column switching, J. Chromatogr. A 1156 (2007) 249–253.
[4]   C. Tayman, M.N. El-Attug, E. Adams, A. Van Schepdael, A. Debeer, K. Allegaert and A. Smits, Quantification of amikacin in bronchial epithelial lining fluid in neonates, Antimicrob. Agents. Chemother. 55 (2011) 3990–3993.
[5]   Y. Bijleveld, T. de Haan, J. Toersche, S. Jorjani, J. van der Lee, F. Groenendaal, P. Dijk, A. van Heijst, A.W. Gavilanes, R. de Jonge, K.P. Dijkman, H. van Straaten, M. Rijken, I. Zonnenberg, F. Cools, D. Nuytemans and R. Mathot, A simple quantitative method analysing amikacin, gentamicin, and vancomycin levels in human newborn plasma using ion-pair liquid chromatography/tandem mass spectrometry and its applicability to a clinical study, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 951 (2014) 110–118.
[6]   J.A. Dijkstra, M.G. Sturkenboom, K.V. Hateren, R.A. Koster, B. Greijdanus and J.W. Alffenaar, Quantification of amikacin and kanamycin in serum using a simple and validated LC–MS/MS method, Bioanalysis 6 (2014) 2125–2133.
[7]   Y. Chen, Q. Chen, L. He, B. Shang and L. Zhang, Enzyme immunoassay and liquid chromatography-fluorescence detection for amikacin in raw milk, Food Chem. 135 (2012) 380–385.
[8]   Y. Tao, D. Chen, H. Yu, L. Huang, Z. Liu, X. Cao, C. Yan, Y. Pan, Z. Liu and Z. Yuan, Simultaneous determination of 15 aminoglycoside(s) residues in animal derived foods by automated solid–phase extraction and liquid chromatography-tandem mass spectrometry. Food Chem. 135 (2012) 676–683.
[9]   A.A. Al-Majed, A new LC method for determination of some aminoglycoside antibiotics in dosage forms and human plasma using 7-fluoro-4-nitrobenz-2-oxa-1,3-diazole as a fluorogenic pre-column label, Chromatographia. 68 (2008) 927–934.
[10]           E.G. Galanakis, N.C. Megoulas, P. Solich and M.A. Koupparis, Development and validation of a novel LC non-derivatization method for the determination of amikacin in pharmaceuticals based on evaporative light scattering detection, J. Pharm. Biomed. Anal. 40 (2006) 1114–1120.
[11]           R. Oertel, V. Neumeister and W. Kirch, Hydrophilic interaction chromatography combined with tandem-mass spectrometry to determine six aminoglycosides in serum, J. Chromatogr. A 1058 (2004) 197–201.
[12]           P. Gambardella, R. Punziano, M. Gionti, C. Guadalupi, G. Mancini and A. Mangia, Quantitative determination and separation of analogues of aminoglycoside antibiotics by high-performance liquid chromatography, J. Chromatogr. 348 (1985) 229–240.
[13]           M. Usmani, S. Ahmed, M.A. Sheraz and I. Ahmad, Development and validation of a pre-column derivatization HPLC method for the assay of amikacin sulfate in pure and parenteral dosage forms. Curr. Pharm. Anal. 15 (2019) DOI: 10.2174/157341291466618031412121.
[14]           F. Sar, P. Leroy, A. Nicolas, P.H. Archimbault and G. Ambroggi, Determination of amikacin in dog plasma by reversed-phase ion-pairing liquid chromatography with post-column derivatization, Anal. Lett. 25 (1992) 1235–1250.
[15]           R. Tawa, H. Matsunaga and T. Fujimoto, High–performance liquid chromatographic analysis of aminoglycoside antibiotics, J. Chromatogr. A 812 (1998) 141–150.
[16]           L. Baietto, A. D'Avolio, F.G. De Rosa, S. Garazzino, M. Michelazzo, G. Ventimiglia, M. Siccardi, M. Simiele, M. Sciandra and G. Di Perri, Development and validation of a simultaneous extraction procedure for HPLC–MS quantification of daptomycin, amikacin, gentamicin, and rifampicin in human plasma, Anal. Bioanal. Chem. 396 (2010) 791–798.
[17]           C. Ezquer-Garin, L. Escuder-Gilabert, Y. Martín-Biosca, R.F. Lisart, S. Sagrado and M.J. Medina-Hernandez, Fit-for-purpose chromatographic method for the determination of amikacin in human plasma for the dosage control of patients, Talanta 150 (2016) 510–515.
[18]           J.M. Serrano and M. Silva, Determination of amikacin in body fluid by high-performance liquid-chromatography with chemiluminescence detection, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 843 (2006) 20–24.
[19]           I. Baranowska, P. Markowski and J. Baranowska, Simultaneous determination of 11 drugs belonging to four different groups in human urine samples by reversed phase high performance liquid chromatography, Anal. Chim. Acta 570 (2006) 46–58.
[20]           S.K. Maitra, T.T. Yoshikawa, C.M. Steyn, L.B. Guze and M.C. Schotz, Amikacin assay in serum by high-performance liquid chromatography, Antimicrob. Agents Chemother. 14 (1978) 880–885.
[21]           J.P. Anhalt and S.D. Brown, High-performance liquid-chromatographic assay of aminoglycoside antibiotics in serum, Clin. Chem. 24 (1978) 1940–1947.
[22]           D.M. Barends, J.S. Blauw, M.H. Smits and A. Hulshoff, Determination of amikacin in serum by high performance liquid chromatography with ultraviolet detection, J. Chromatogr. 276 (1983) 385–394.
[23]           L.T. Wong, A.R. Beaubien and A.P. Pakuts, Determination of amikacin in microliter quantities of biological fluids by high-performance liquid chromatography using 1-fluoro-2,4-dinitrobenzene derivatization, J. Chromatogr. 231 (1982) 145–154.
[24]           M.A. Korany, R.S. Haggag, M.A. Ragab and O.A. Elmallah, Liquid chromatographic determination of amikacin sulphate after pre-column derivatization, J. Chromatogr. Sci. 52 (2014) 837–847.
[25]           D. He and L.Yang, Determination of amikacin sulfate injection by HPLC with post-column derivatization, Chinese J. Pharm. Anal. 29 (2009) 1025–1026.
[26]           M. Dave Vimal, Development and validation of RP–HPLC method for simultaneous estimation of cefepime hydrochloride and amikacin sulphate in injection dosage form, J. Pharm. Sci. Biosci. Res. 2 (2012) 138–143.
[27]           A. Soliven, I.A. Ahmad, J. Tam, N. Kadrichu, P. Challoner, R. Markovich and A. Blasko, A simplified guide for charged aerosol detection of non-chromophoric compounds-Analytical method development and validation for the HPLC assay of aerosol particle size distribution for amikacin, J. Pharm. Biomed. Anal. 143 (2017) 68–76.
[28]           G. Morovjan, P.P. Csokan and L. Nemeth-Konda, HPLC determination of colistin and aminoglycoside antibiotics in feeds by post-column derivatization and fluorescence detection, Chromatographia 48 (1998) 32–36.
[29]           M. Yang and S.A. Tomellini, Non-derivatization approach to high-performance liquid chromatography-fluorescence detection for aminoglycoside antibiotics based on a ligand displacement reaction, J. Chromatogr. A 939 (2001) 59–67.
[30]           G.H. Chen, S.P. Pan and J.N. Hu, Determination of amikacin sulfate and its related substances by HPLC–ELSD, Chinese J. Pharm. 36 (2005) 171–173.
[31]           W. Hong-Wei and W. Wei, HPLC–ELSD determination of amikacin sulfate for injection, Drug Stand. China 3 (2007) 34–35.
[32]           J. Wang, Z.J. Wang and C.F. Fang, HPLC–ELSD analysis of amikacin lotion, J. Pharm. Anal. 29 (2009) 950–953.
[33]           J.F. Ovalles, R. Brunetto Mdel and M. Gallignani, A new method for the analysis of amikacin using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization and high-performance liquid chromatography with UV-detection, J. Pharm. Biomed. Anal. 39 (2005) 294–298.
[34]           H.H. Yeh, S.J. Lin, J-Y Ko, C-A Chou and S-H Chen, Rapid and selective micellar electrokinetic chromatography for simultaneous determination of amikacin, kanamycin A, and tobramycin with UV detection and application in drug formulations, Electrophoresis. 26 (2005) 947–953.
[35]           N.H. Zawilla, B. Li, J. Hoogmartens and E. Adams, Improved reversed-phase liquid chromatographic method combined with pulsed electrochemical detection for the analysis of amikacin, J. Pharm. Biomed. Anal. 43 (2007) 168–173.
[36]           J.M. Serrano and M. Silva, Rapid and sensitive determination of aminoglycoside antibiotics in water samples using a strong cation-exchange chromatography non-derivatisation method with chemiluminescence detection, J. Chromatogr. A 1117 (2006) 176–183.
[37]           D. Li, S. He, Y. Deng, G. Ding, H. Ni and Y. Cao, Development and validation of an HPLC method for determination of Amikacin in water samples by solid phase extraction and pre-column derivatization, Bull. Environ. Contam. Toxicol. 93 (2014) 47–52.
[38]           B. Chauhan and S. Jalalpure, Analysis of amikacin in human serium by UHPLC with fluorescence detector using chloro-formate reagent with glycine, Pharma. Methods 7 (2016) 99–103. 
[39]           S.J. Lehotay, K. Mastovska, A.R. Lightfield, A. Nunez, T. Dutko, C. Ng and L. Bluhm, Rapid analysis of aminoglycoside antibiotics in bovine tissues using disposable pipette extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry, J. Chromatogr. A 1313 (2013) 103–112.
[40]           Q. Li and Y. Liu, Ion chromatography determination of related substances in amikacin sulfate raw materials and its preparations, Chinese J. Pharma. Anal. 32 (2012) 318–322.
[41]           V.D. Gupta, K.R. Stewart and J.M. Gunter, Quantitation of amikacin, kanamycin, neomycin, and tobramycin in pharmaceutical dosage forms using the Hantzsch reaction, J. Pharm. Sci. 72 (1983) 1470–1471.
[42]           A. Rizk and B. Younis, Spectrophotometric assay of certain aminoglycosides using chloranil, Anal. Lett. 17 (1984) 1803–1809.
[43]           M. Confino and P. Bontchev, Spectrophotometric determination of amikacin, kanamycin, neomycin and tobramycin, Microchimica Acta 102 (1990) 305–309.
[44]           S.S. Sampath and D.H. Robinson, Comparison of new and existing spectrophotometric methods for the analysis of tobramycin and other aminoglycosides, J. Pharm. Sci. 79 (1990) 428–431.
[45]           T.N. Al-Sabha, Spectrophotometric determination of amikacin sulphate via charge transfer complex formation reaction using tetracyanoethylene and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone reagents, Arabian J. Sci. Eng. 35 (2010) 29–40.
[46]           C. Ping, H. Minmin and C. Nengeng, Determination of amikacin in amikacin injection and the compatible stability with 0.9% sodium chloride injection, Chinese J. Clin. Pharm. 6 (2014) 376–379.
[47]           D.A. Bhatt, L.M. Prajapati, A.K. Joshi and M.L. Kharodiya, Development and validation of spectrophotometry method for simultaneous estimation of cefepime hydrochloride and amikacin sulphate, World J. Pharm. Res. 4 (2015) 1482–1491.
[48]           N.A. Zakhari, Spectrophotometric assay of certain aminoglycosides using cyanoacetamide, Anal. Lett. 23 (1990) 1843–1856.
[49]           F-M. Shi, Y. Yang, Y-B. Tian, Quantitative determination of amikacin sulfate in injection by UV-spectrophotometer, Acta Academiae Med Zunyi 3 (2003) 286–287.
[50]           D. Vimal, H. Kinjala and S. Fladu, Development and validation of first order derivative spectrophotometric method for simultaneous estimation of cefepime hydrochloride and amikacin sulphate in injection, J. Pharm. Sci. Bio. Sci. Res. 2 (2012) 58–62.
[51]           M.A. Omar, D.M. Nagy, M.A. Hammad and A.A. Aly, Validated spectrophotometric methods for determination of certain aminoglycosides in pharmaceutical formulations, J. App. Pharm. Sci. 3 (2013) 151–161.
[52]           U.U.R. Mughal, A. Dayo, M.A. Ghoto, M. Lal, M.I. Arain, R. Parveen and R.A. Gilal, Quantitative determination of amikacin sulfate using vanillin from pure and commercial brands available in Pakistan, J. Young Pharm. 8 (2016) 28–32.
[53]           K.P. Portna, S.O. Vasyuk and A.S. Korzhova, Spectrophotometric determination amikacin in reaction with 1, 2-naphthoquinone-4-sulfonic acid sodium salt, Int. J. Curr. Res. Chem. Pharm. Sci. 5 (2015) 15–18.
[54]           Y. El-Shabrawy, Fluorimetric determination of aminoglycoside antibiotics in pharmaceutical preparations and biological fluids, Spectroscopy Lett. 35 (2002) 99–109.
[55]           L. Man-Xiu and M.A. Li-Mei, Study on the fluorescence characteristics of amikacin based on charge transfer reaction, J. Anal. Sci. 2 (2007) 48–52.
[56]           M.A. Omar, D.M. Nagy, M.A. Hammad, A.A. Aly, Highly sensitive spectrofluorimetric method for determination of certain aminoglycosides in pharmaceutical formulations and human plasma, AAPS PharmSciTech 14 (2013) 828–837.
[57]           M.X. Li, K.K. Liu, Y.N. Shi, Determination of amikacin by fluorescence spectrophotometry, Anal. Abstracts 31 (2012) 44–46.
[58]           M.A. Omar, M.A. Hammad, D.M. Nagy and A.A. Aly, Development of spectrofluorimetric method for determination of certain aminoglycoside drugs in dosage forms and human plasma through condensation with ninhydrin and phenyl acetaldehyde, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 136 (2014) 1760–1766.
[59]           M.G. Caglayan and F. Onur, A metal-enhanced fluorescence study of primary amines: determination of aminoglycosides with europium and gold nanoparticles, Anal. Methods 7 (2015) 1407–1414.
[60]           M.P. Mingeot-Leclercq, R. Brasseur and A. Schanck, Molecular parameters involved in aminoglycoside nephrotoxicity, J. Toxicol. Environ. Health 44 (1995) 263–300.
[61]           J.R. Cox and E.H. Serpersu, Biologically important conformations of aminoglycoside antibiotics bound to an aminoglycoside 3'-phosphotransferase as determined by transferred nuclear overhauser effect spectroscopy, Biochemistry 36 (1997) 2353–2359.
[62]           M. Jezowska-Bojczuk and W. Bal, Co-ordination of copper(II) by amikacin. Complexation equilibria in solution and oxygen activation by the resulting complexes, J. Chem. Soc. Dalton Trans. 1 (1998) 153–160.
[63]           E. Gaggelli, N. Gaggelli, A. Maccotta, G. Valensin, D. Marini, M.E. Di Cocco, C. Manetti, and M. Delfini, Delineation of conformational and structural features of the amikacin-Cu(II) complex in water solution by 13C–NMR spectroscopy, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 55A (1999) 205–210.
[64]           A.H. Khan, B. Shaikh, E.H. Allen and E.A. Sokoloski, Californium-252 plasma desorption mass spectrometry of aminoglycoside antibiotics, Biomed. Environ. Mass Spectrom. 17 (1988) 329–335.
[65]           E. Kaale, C. Govaerts, J. Hoogmartens and A.V. Schepdael, Mass spectrometric study to characterize thioisoindole derivatives of aminoglycoside antibiotics, Rapid Commun. Mass Spectrom. 19 (2005) 2918–2922.
[66]           R. Wang, S. Fan, R. Wang, R. Wang, H. Dou and L. Wang, Determination of aminoglycoside antibiotics by a colorimetric method based on the aggregation of gold nanoparticles, Nano 8 (2013) 1350037.
[67]           N. Shahzadi, K. Hussain, M.T. Khan, M. Salman, M. Islam and H.M. Khan, Development of a validated colorimetric assay method for estimation of amikacin sulphate in bulk and injectable dosage, J. Chem. Soc. Pak. 38 (2016) 63–69.
[68]           M.G. Caglayan and F. Onur, Silver nanoparticle based analysis of aminoglycosides. Spectroscopy Lett. 47 (2014) 771–780.
[69]           R. Tian, M.A. Chen, J.Y. Wang, Y.Y. Li, X.H. Sun and X.F. Han, Determination of amikacin based on gold nanoparticles by colorimetric method, Chinese J. Anal. Lab. 34 (2015) 947–949.
[70]           R.S. Kane, P.T. Glink, R.G. Chapman, J.C. McDonald, P.K. Jensen, H. Gao, L. Pasa-Tolic, R.D. Smith and G.M. Whitesides, Basicity of the amino groups of the aminoglycoside amikacin using capillary electrophoresis and coupled CE–MS–MS techniques, Anal. Chem. 73 (2001) 4028–4036.
[71]           W.C. Yang, A.M. Yu and H.Y. Chen, Applications of a copper microparticle-modified carbon fiber microdisk array electrode for the simultaneous determination of aminoglycoside antibiotics by capillary electrophoresis, J. Chromatogr. A 905 (2001) 309–318.
[72]           M.N. El‐Attug, E. Adams and A. Van Schepdael, Development and validation of a capillary electrophoresis method with capacitively coupled contactless conductivity detection (CE–C4D) for the analysis of amikacin and its related substances, Electrophoresis 33 (2012) 2777–2782.
[73]           H.Y. Zhai, X.W. Lu, Y.H. Wu and Z.G. Chen, Rapid determination of amikacin sulfate in amikacin sulfate injection by capillary electrophoresis, J. Instrument Anal. 27 (2008) 769–771.
[74]           S. Oguri and Y. Miki, Determination of amikacin in human plasma by high-performance capillary electrophoresis with fluorescence detection, J. Chromatogr. B: Biomed. Sci.  Appl. 686 (1996) 205–210.
[75]           J.M. Ramos Fernandez, J.M. Bosque-Sendra, A.M. Garcia-Campaaa and F. Ales Barrero, Chemiluminescence determination of amikacin based on the inhibition of the luminol reaction catalyzed by copper, J. Pharm. Biomed. Anal. 36 (2005) 969–974.
[76]           C. Yang, Z. Zhang and J. Wang, New luminol chemiluminescence reaction using diperiodatoargentate as oxidate for the determination of amikacin sulfate, Luminescence 25 (2010) 36–42.
[77]           M. Sierra-Rodero, J.M. Fernandez-Romero and A. Gomez-Hens, Determination of aminoglycoside antibiotics using an on-chip microfluidic device with chemiluminescence detection, Microchim. Acta 179 (2012) 185–192.
[78]           Y-F Hu, G-K Li and Z-J Zhang, A novel luminol-based chemiluminescence method for the determination of amikacin sulfate in serum by using trivalent copper-periodate complex, J. Pharma. Anal. 3 (2013) 360–366.
[79]           J.E. Lewis, J.C. Nelson and H.A. Elder, Amikacin: a rapid and sensitive radioimmunoassay, Antimicrob. Agents Chemother. 7 (1975) 42–45.
[80]           M.E. Jolley, S.D. Stroupe, C.H. Wang, H.N. Panas, C.L. Keegan, R.L. K.S. Schmidt, Schwenzer, Fluorescence polarization immunoassay. I. Monitoring aminoglycoside antibiotics in serum and plasma, Clin. Chem. 27 (1981) 1190–1197.
[81]           D.R. Mendu, P.P. Chou and S.J. Soldin, An improved application for the enzyme multipled immunoassay technique for caffeine, amikacin, and methotrexate assays on the Dade-Behring Dimension RxL Max clinical chemistry system, Ther. Drug Monit. 29 (2007) 632–637.
[82]           M.L. Sanchez-Martínez, M.P. Aguilar-Caballos and A. Gomez-Hens, Long-wavelength fluorescence polarization immunoassay: determination of amikacin on solid surface and gliadins in solution, Anal. Chem. 79 (2007) 7424–7430.
[83]           M.L. Sanchez-Martínez, M.P. Aguilar-Caballos and A. Gomez-Hens, Long-wavelength homogeneous enzyme immunoassay for the determination of amikacin in water samples, Talanta 78 (2009) 305–309.
[84]           C.L. Sun, W.M. Mo, J.X. Wang, Y.H. Chen, Z.M. Hu, Determination of amikacin by single oscillopolarography in the presence of formaldehyde, Yao Xue Xue Bao 31 (1996) 126–131.
[85]           W.A. Xue-Liang, Linear sweep polarographic determination of amikacin with amaranth as electrochemical probe, Chinese J. Anal. Lab. 6 (2006) 43–45.
[86]           J-Z. Xu, J-J. Zhu, H. Wang and H-Y Chen, Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin, Anal. Lett. 36 (2003) 2723–2733.
[87]           W. Han, F. Qu, J. Shang, W. Lu, J. Yang and Q. Ma, Determination of amikacin in different pharmaceutical formulations using a resonance Rayleigh scattering method with pontamine sky blue, Curr. Pharm. Anal. 10 (2014) 105–111.
[88]           T.O. Samarina and M.K. Beklemishev, Determination of amikacin by Rayleigh scattering method based on the covalent bonding of the analyte with a water soluble polymer, Moscow Univ. Chem. Bull. 70 (2015) 223–228.
[89]           F. Lotfipour, F. Yeganeh, E. Tamizi, A. Zahedi and M. Asefi, Study of the efficacy of real time-PCR method for amikacin determination using microbial assay, Adv. Pharm. Bull. 5 (2015) 181–188.