[1] C.M. Wu and C.Y. Wang, Physiological study on bentazon tolerance in inbred corn, Weed Technol. 17 (2003) 565–570.
[2] J.M. Salman and B.H. Hameed, Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions, J. Hazard. Mater. 175 (2010) 133–137.
[3] A. Fuhrmann, O. Gans, S. Weiss, G. Haberhauer and M.H. Gerzabek, Determination of bentazone, chloridazon and terbuthylazine and some of their metabolites in complex environmental matrices by liquid chromatography–electrospray ionization–tandem mass spectrometry using a modified QuEChERS method: an Optimization and validation study, Water Air Soil Pollut. 225 (2014) 1944.
[4] G.M.F. Pinto and I.C.S.F. Jardim, Determination of bentazon residues in water by high-performance liquid chromatography: Validation of the method, J. Chromatgr A, 846 (1999) 369–374.
[5] C.W. Thorstensen, O. Lode, A.L. Christianse, Determination of bentazone, dichlorprop, and MCPA in different soils by sodium hydroxide extraction in combination with solid-phase preconcentratio, J. Agric. Food Chem., 48 (2000) 5829−5833.
[6] E.M. Garrido, J.L. Costa Lima, C.M. Delerue-Matos and A.M. Oliveira Brett, electrochemical oxidation of bentazon at a glassy carbon electrode Application to the determination of a commercial herbicide, Talanta 46 (1998) 1131–1135.
[7] I.A. Akinbulu and T. Nyokong, Characterization of polymeric film of a new manganese phthalocyanine complex octa-substituted with 2-diethylaminoethanethiol, and its use for the electrochemical detection of bentazon, Electrochim. Acta 55 (2009) 37–45.
[8] Z. Shahnavaz, P.M. Woi and Y. Alias, Electrochemical sensing of glucose by reduced graphene oxide-zinc ferrospinels, Appl. Surf. Sci., 379 (2016) 156–162.
[9] D. Lu, Y. Zhang, S. Lin, L. Wang and C. Wang, Synthesis of magnetic ZnFe2O4 /graphene composite and its application in photocatalytic degradation of dyes, J. Alloys Compd. 579 (2013) 336–342.
[10] Y. Fu and X. Wang, Magnetically Separable ZnFe2O4–Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation, Ind. Eng. Chem. Res. 50 (2011) 7210–7218.
[11] Q. Ke and J. Wang, Graphene-based materials for supercapacitor electrodes, J. Materiomics 2 (2016) 37-54.
[12] D. Chen, H. Feng and J. Li, Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications, Chem. Rev. 112 (2012) 6027–6053.
[13] S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal and K.J. BalkusJr, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal., 2 (2012) 949–956.
[14] J.J. Shi, X.Y. Zhou, Y. Liu, Q.M. Su, J. Zhang and G.H. Du, One-pot solvothermal synthesis of ZnFe2O4 nanospheres/graphene composites with improved lithium storage performance, Mater. Res. Bull. 65 (2015) 204-209.
[15] M.d Fouladgar, Nanostructured Sensor for Simultaneous Determination of Trace Amounts of Bisphenol A and Vitamin B6 in Food Samples, Food Anal. Method, 10 (2017) 1507–1514.
[16] V. Rahemi, J. M. P. J. Garrido, F. Borges, C.M.A. Brett and E.M.P.J. Garrido, Electrochemical Determination of the Herbicide Bentazone Using a Carbon Nanotube b-Cyclodextrin Modified Electrode, Electroanalysis 25 (2013) 2360–2366.
[17] C.M.A Brett and A.M. Oliveira-Brett, Electrochemistry, Principles, Methods and Applications, Oxford University Press, Oxford, UK 1993.
[18] A.R. Rautio, O. Pitkanen, T. Jarvinen, A. Samikannu, N. Halonen, M. Mohl, J.P. Mikkola and K. Kordas, Electric Double-Layer Capacitors Based on Multiwalled Carbon Nanotubes: Can Nanostructuring of the Nanotubes Enhance Performance, J. Phys. Chem. C. 119 (2015) 3538−3544.
[19] S.E. Sajjad and A. Ghannadi, Essential oil of the Persian sage, Salvia rhytidea Benth, Acta Pharm. 55 (2005) 321-326.
[20] R.P. Pohanish, Sittig´s handbook of agriculture and chemicals, second edithion, William Andrew publishing, Norwich, NY, 2005