با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 بخش شیمی، دانشگاه پیام نور، صندوق پستی 3697-19395، تهران، ایران

2 سازمان پزشکی قانونی، تهران، ایران

3 دانشگاه آزاد اسلامی، واحد لامرد، صندوق پستی 553881-74341، فارس، ایران

چکیده

در این مقاله، نانوذرات مغناطیسی عامل ­دار­شده با لیگاند تری آزن برای استخراج و پیش ­تغلیظ یون جیوه در نمونه­ های آبی با دستگاه اسپکتروفتومتر مرئی- ماورائ بنفش اندازه­ گیری شده است. ویژگی­ های نانو ذرات اصلاح ­شده با تکنیک ­های مختلف از جمله میکروسکوپ روبش الکترونی، میکروسکوپ الکترونی عبوری و دیفراکسیون اشعه ایکس مورد ارزیابی قرار گرفت. در فرایند جداسازی، محلول آبی یون جیوه با نانوذرات مغناطیسی اکسید آهن اصلاح­شده با لیگاند تری آزن مخلوط شد و سپس یک میدان مغناطیسی خارجی برای جداسازی نانو ذرات شامل یون جیوه مورد استفاده قرار گرفت. شرایط آزمایشگاهی برای جذب موثر شامل مقدار اصلاح گر، مقدار نانو ذره و نوع شوینده بررسی گردید. تحت شرایط بهینه استخراج و پیش تغلیظ، دامنه خطی منحنی کالیبراسیون از80-4 میکرو گرم بر لیتر با ضریب رگراسیون992/0 برای 20 بار اندازه­ گیری،  حد تشخیص 05/1 میکروگرم بر لیتر و فاکتور پیش ­تغلیظ 38 بدست آمد. این تکنیک برای نمونه ­های آبی یون جیوه موفقیت­ آمیز بوده است.

کلیدواژه‌ها

[1] D.K. Singh and S. Mishra, Synthesis and characterization of Hg (II)-ion-imprinted polymer: kinetic and isotherm studies, Desalin 257 (2010) 177-183.
[2] L. Mergola, S. Scorrano, E. Bloise and M. Pia Di Bello, Novel polymeric sorbents based on imprinted Hg (II)-diphenylcarbazone complexes for mercury removal from drinking water, Polymer J. 48 (2016) 73-79.
[3] N.S.  Khairi, NA. Yusof, A.H. Abdullah and F. Mohammad, Removal of Toxic Mercury from Petroleum Oil by Newly Synthesized Molecularly-Imprinted Polymer, J. Mol. Sci. 16 (2015) 10562 -10577.
[4] H.R. Rajabi, M. Roushani and M. Shamsipur, Development of a highly selective voltammetric sensor for nanomolar detection of mercury ions using glassy carbon electrode modified with a novel ion imprinted polymeric nanobeads and multi-wall carbon nanotubes, J. Electroanal. Chem. 693 (2013) 16-22.
[5] A. Afkhami, T. Madrakian, S.J. Sabounchei, M. Rezaei, S. Samiee and M. Pourshahbaz, Construction of a modified carbon paste electrode for the highly selective simultaneous electrochemical determination of trace amounts of mercury (II) and cadmium (II), Sensor. Actuat. B-Chem. 161 (2012) 542 -548.
[6] A. Shokrollahi, M. Ghaedi and M. Shamsipur, Highly selective transport of mercury (II) ion through a bulk liquid membrane, Quim. Nova 32 (2009) 153-157.
[7] I. Ghodbane and O. Hamdaoui, Removal of mercury (II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies, J. Hazard. Mater, 160 (2008) 301-309.
[8] M. Ghaedi, M.R. Fathi, A. Shokrollahi and F. Shajarat, Highly selective and sensitive preconcentration of mercury ion and determination by cold vapour atomic absorption spectroscopy Anal. Lett. 39 (2006) 1171-1185.
[9] D.M. Manohar, K.A. Krishnan and T.S. Anirudhan, Removal of mercury (II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay, Water. Res., 36 (2002) 1609-1619.
[10] M. Tuzen, I. Karaman, D. Citak and M. Soylak, Mercury (II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination, Food. Chem. Toxicol, 47 (2009)1648-1652.
[11] C. Huang, B. Hu, Silica-coated magnetic nanoparticles modified with γ-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry, Spectrochim. Acta B. 63 (2008) 437-444.
[12] M. Baghdadi and F. Shemirani, Cold-induced aggregation micro extraction: a novel sample preparation technique based on ionic liquids, Anal. Chim. Acta. 613 (2008) 56-63.
[13] Z. Li, Q. Wei, R. Yuan, X. Zhou, H .Liu, H. Shan and Q. Song, A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexa-fluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption, spectrometry, Talanta 71 (2007) 68-72.
[14] N. Pourreza and K. Ghanemi, Determination of mercury in water and fish samples by cold vapor atomic absorption spectrometry after solid phase extraction on agar modified with 2-mercaptobenzimidazole, j. Hazard. Mater 161 (2009) 982-987.
[15] R. Ito, M. Kawaguchi, N. Sakui, H. Honda, N. Okanouchi, K. Saito and H. Nakazawa, Mercury speciation and analysis in drinking water by stir bar sorptive extraction with in situ propyl derivatization and thermal desorption–gas chromatography–mass spectrometry, J. Chromatogr A 1209 (2008) 267-270.
[16] J.C.A. de Wuilloud, R.G. Wuilloud, M.F. Silva, R.A. Olsina and L.D. Martinez, Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry, Spectrochim. Acta B. 57 (2002) 365-374.
[17] R. Eisler, Mercury Hazards to Living Organisms, 1st ed, Taylor & Francis (2006) 155.
[18] L. Ebdon, M.E. Foulkes, S.L. Roux and R. Munoz-Olivas, Cold vapour atomic fluorescence spectrometry and gas chromatography-pyrolysis-atomic fluorescence spectrometry for routine determination of total and organometallic mercury in food samples, Analyst, 127 (2002) 1108-1114.
[19] A. Detcheva and K.H. Grobecker, Determination of Hg, Cd, Mn, Pb and Sn in seafood by solid sampling Zeeman atomic absorption spectrometry, Spectrochim. Acta B 61, (2006) 454-459.
[20] K. Leopold, M. Foulkes and P.J. Worsfold, Preconcentration techniques for the determination of mercury species in natural waters TrAC, Trends. Anal. Chem. 28 (2009) 426-435.
[21] O.T. Butler, M. Cook, C.F. Harrington, S.J. Hill, J. Rieuwerts and D.L. Miles, Atomic spectrometry update. Environmental analysis, J. Anal. Atom. Spectrom. 22 (2007) 187-221.
[22] C. Huang, and B. Hu, Speciation of inorganic tellurium from seawater by ICP‐MS following magnetic SPE separation and preconcentration, J. Sep. Sci. 31 (2008) 760-767.
[23] M. Shamsipur, M. Hosseini, K. Alizadeh, N. Alizadeh, A. Yari, C. Caltagirone and V. Lippolis, Novel fluorimetric bulk optode membrane based on a dansylamidopropyl pendant arm derivative of 1-aza-4, 10-dithia-7-oxacyclododecane ([12] aneNS2O) for selective subnanomolar detection of Hg(II) ions,  Anal. Chim. Acta.533 (2005) 17-24.
[24] G. Vasile, N.M. Marin, L.V. Cruceru, M. Simion, T. Galaon, andC.B. Lehr, Determination of ultra-trace mercury in water samples based on cold vapor atomic fluorescence spectrometry using a gold trap, Rev. Chim. 67 (2016) 1427–1432.
[25] O.Yayayuruk, E. Henden, Use of Ni/NixB nanoparticles as a novel adsorbent for thepreconcentration of mercury species prior to cold vapor-atomic fluorescence spectrometric determination, Anal. Sci. 32 (2016) 867–873.
[26] S. Zhu, B. Chen, M. He, T. Huang, B. Hu, Speciation of mercury in water and fish samples by HPLC-ICP-MS after magnetic solid phase extraction, Talanta 171 (2017) 213-219.
[27] H. Cheng, X. Chen, L. Shen, Y. Wang, Z. Xu, J. Liu, Ion-pairing reversed-phase chromatography coupled to inductively coupled plasma mass spectrometry as a tool to determine mercurial species in freshwater fish, J. Chromatogr. A 1531 (2018) 104-111.
[28] M.L. Carvalho, M. Manso, s. Pessanha, A. Guilherme and FR. Ferreira, Quantification of mercury in XVIII century books by Energy Dispersive X-Ray Fluorescence (EDXRF), J. Cult. Herit 10 (2009) 435-438.
[29] A. Bernaus, X. Gaona, J.M. Esbri, P. Higueras, G. Falkenberg and M. Valiente, Microprobe techniques for speciation analysis and geochemical characterization of mine environments: the mercury district of Almadén in Spain, Environ. Sci. Tech. 40 (2006) 4090-4095.
[30] W. Stöber, A. Fink and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid. interf. Sci 26 (1968) 62-69.
[31] J.S. Suleiman, B. Hu, H. Peng and C. Huang, Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES, Talanta 77 (2009) 1579-1583.
[32] H. Tavallali, H. Shafiekhani, M.K. Rofouei and M. Payehghadr, A new triazene ligand immobilized on triacetylcellulose membrane for selective determination of mercury ion, J. Braz. Chem. Soc 25 (2014) 861- 866.