[1] J.L. Pablos, M. Trigo-Lopez, F. Serna, F.C. Garcia and J.M. Garcia, Solid polymer substrates and smart fibres for the selective visual detection of TNT both in vapour and in aqueous media, RSC Adv. 4 (2014) 25562–25568.
[2] K. Galic, M. Scetar and M. Kurek, The benefits of processing and packaging, Trends Food Sci. Technol. 22 (2011) 127–137.
[3] S.F. Schilthuizen, Communication with your packaging: possibilities for intelligent functions and identification methods in packaging, Packag. Technol. Sci. 12 (1999) 225–228.
[4] B. Kuswandi and Y. Wicaksono, Smart packaging: sensors for monitoring of food quality and safety, Sens. Instrum. Food Qual. Saf. 5 (2011) 137–146.
[5] D. Restuccia, U.G. Spizzirri, O.I. Parisi, G. Cirillo, M. Curcio, F. Iemma, F. Puoci, G. Vinci and N. Picci, New EU regulation aspects and global market of active and intelligent packaging for food industry applications, Food Control. 21 (2010) 1425–1435.
[6] A. Pacquit, J. Frisby, D. Diamond, K.T. Lau, A. Farrell, B. Quilty and D. Diamond, Development of a smart packaging for the monitoring of fish spoilage, Food Chem. 102 (2007) 466−470.
[7] P.Q. Leng, F.L. Zhao, B.C. Yin, B.C. Ye, A novel, colorimetric method for biogenic amine detection based on arylalkylamine N-acetyltransferase, Chem. Commun. 51 (2015) 8712−8714.
[8] J.L. Pablos, S. Vallejos, A. Munoz, M.J. Rojo, F. Serna, F.C. Garcia and J.M. Garcia, Solid polymer substrates and coated fibers containing 2,4,6‐Trinitrobenzene motifs as smart labels for the visual detection of biogenic amine vapors, Chem. Eur. J. 21 (2015) 8733 – 8736.
[9] X.W. Huang, X.B. Zou, J.Y. Shi, Y. Guo, J.W. Zhao, J. Zhang and L. Hao, Determination of pork spoilage by colorimetric gas sensor array based on natural pigments, Food Chem. 145 (2014) 549−554.
[10] Z. Gao, K. Deng, X.D. Wang, M. Miró and D. Tang, High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod, ACS Appl. Mater. Interfaces 6 (2014) 18243−18250.
[11] X. Yang and Z. Gao, Enzyme-catalysed deposition of ultrathin silver shells on gold nanorods: a universal and highly efficient signal amplification strategy for translating immunoassay into a litmus-type test, Chem. Commun. 51 (2015) 6928−6931.
[12] Z. Zhang, Z. Chen, S. Wang, F. Cheng and L. Chen, Iodine-mediated etching of gold nanorods for plasmonic ELISA based on colorimetric detection of alkaline phosphatase, ACS Appl. Mater. Interfaces 7 (2015) 27639−27645.
[13] J. Chen, A.A. Jackson, V.M. Rotello and S.R. Nugen, Colorimetric Detection of Escherichia coli Based on the Enzyme‐Induced Metallization of Gold Nanorods, Small 12 (2016) 2469−2475.
[14] T. Lin, Y. Wu, Z. Li, Z. Song, L. Guo and F. Fu, Visual monitoring of food spoilage based on hydrolysis-induced silver metallization of au nanorods, Anal. Chem. 88 (2016) 11022−11027.
[15] I.H. Cho, L. Mauer and J. Irudayaraj, In-situ fluorescent immunomagnetic multiplex detection of foodborne pathogens in very low numbers, Biosens. Bioelectron. 57 (2014) 143−148.
[16] G. Olafsdottir, R. Jonsdottir, H.L. Lauzon, J. Luten and K.J. Kristbergsson, Characteriz-ation of Volatile Compounds in Chilled Cod (Gadus morhua) Fillets by Gas Chromatography and Detection of Quality Indicators by an Electronic Nose, Agric. Food Chem. 53 (2005) 10140−10147.
[17] J.R. Askim, M. Mahmoudi and K.S. Suslick, Optical sensor arrays for chemical sensing: the optoelectronic nose, Chem. Soc. Rev. 42 (2013) 8649−8682.
[18] R.A. Potyrailo, N. Nagraj, Z. Tang, F.J. Mondello, C. Surman and W.J. Morris, Battery-free radio frequency identification (RFID) sensors for food quality and safety, Agric. Food Chem. 60 (2012) 8535−8543.
[19] K. Sowoidnich, H. Schmidt, H.D. Kronfeldt and F. Schwägele, A portable 671 nm Raman sensor system for rapid meat spoilage identification, Vib. Spectrosc. 62 (2012) 70−76.
[20] S. Sen and P. Sarkar, A novel third-generation xanthine biosensor with enzyme modified glassy carbon electrode using electrodeposited MWCNT and nanogold polymer composite film, RSC Adv. 5 (2015) 95911−95925.
[21] L.D. Bonifacio, G.A. Ozin and A.C. Arsenault, Photonic nose–sensor platform for water and food quality control, Small 7 (2011) 3153−3157.
[22] M.K. Morsy, K. Zór, N. Kostesha, T.S. Alstrøm, A. Heiskanen, H. El-Tanahi and A. Sharoba, Development and validation of a colorimetric sensor array for fish spoilage monitoring, Food Control 60 (2016) 346−352.
[23] M.S. Steiner, R.J. Meier, A. Duerkop and O. Wolfbeis, Chromogenic sensing of biogenic amines using a chameleon probe and the red− green− blue readout of digital camera images, Anal. Chem. 82 (2010) 8402−8405.
[24] F. B. Erim, Recent analytical approaches to the analysis of biogenic amines in food samples, TrAC, Trends Anal. Chem. 52 (2013) 239−247.
[25] P.Q. Leng, F.L. Zhao, B.C. Yin and B.C. Ye, A novel, colorimetric method for biogenic amine detection based on arylalkylamine N-acetyltransferase, Chem. Commun. 51 (2015) 8712−8714.
[26] M. Gao, S. Li, Y. Lin, Y. Geng, X. Ling, L. Wang, A. Qin and B.Z. Tang, Fluorescent Light-Up detection of amine vapors based on aggregation-induced emission, ACS Sens. 1 (2016) 179−184.
[27] S.F. Liu, A.R. Petty, G.T. Sazama and T.M. Swager, Single‐walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage, Angew. Chem., Int. Ed. 54 (2015) 6554−6557.
[28] S. Rochat and T.M. Swager, Fluorescence sensing of amine vapors using a cationic conjugated polymer combined with various anions, Angew. Chem., Int. Ed. 53 (2014) 9792−9796.
[29] T. Ramon-Marquez, A.L. Medina-Castillo, A. Fernandez-Gutierrez and J.F. Fernandez-Sanchez, Novel optical sensing film based on a functional nonwoven nanofibre mat for an easy, fast and highly selective and sensitive detection of tryptamine in beer, Biosens. Bioelectron. 79 (2016) 600−607.
[30] Y.F. Huang, C.K. Chiang, Y.W. Lin, K. Liu, C.C. Hu, M.J. Bair and H.T. Chang, Capillary electrophoretic separation of biologically active amines and acids using nanoparticle‐coated capillaries, Electrophoresis 29 (2008) 1942−1951.
[31] Z. Wang, F. Liu and C. Lu, Evolution of biogenic amine concentrations in foods through their induced chemiluminescence inactivation of layered double hydroxide nanosheet colloids, Biosens. Bioelectron. 60 (2014) 237−243.
[32] C.F. Chow, M.H. Lam and W.Y. Wong, Design and synthesis of heterobimetallic Ru (II)–Ln (III) complexes as chemodosimetric ensembles for the detection of biogenic amine odorants, Anal. Chem. 85 (2013) 8246−8253.
[33] R. Grau, A.J. Sánchez, J. Girón, E. Iborra, A. Fuentes and J.M. Barat, Nondestructive assessment of freshness in packaged sliced chicken breasts using SW-NIR spectroscopy, Food Res. Int. 44 (2011) 331−337.
[34] A.C. Manetta, L. Di Giuseppe, R. Tofalo, M. Martuscelli, M. Schirone, M. Giammarco and G. Suzzi, Evaluation of biogenic amines in wine: determination by an improved HPLC-PDA method, Food Control 62 (2016) 351−356.
[35] N. Gandhi, A. Kumar, C. Kumar, N. Mishra, P. Chaudhary, N.K. Kaushikd and R. Singh, Synthesis, characterization, thermal and biological activity of some novel Cadmium (II)–pyridine and purine base complexes, Main Group Chem. 15 (2016) 35–46.
[36] M. Zahedifar, A. Es-haghi, R. Zhiani and S.M. Sadeghzadeh, Synthesis of benzimidazolones by immobilized gold nanoparticles on chitosan extracted from shrimp shells supported on fibrous phosphosilicate, RSC Adv. 9 (2019) 6494–6501.
[37] M. Banach, Z. Kowalski, Z. Wzorek and K. Gorazda, A chemical method of the production of" heavy" sodium tripolyphosphate with the high content of Form I or Form II, Pol. J. Chem. Techno. 11 (2009) 13-20.
[38] Ph. Massiot, M.A. Centeno, I. Carrizosa and J.A. Odriozola, Thermal evolution of sol–gel-obtained phosphosilicate solids (SiPO), J. Non-Cryst. Solids 292 (2001) 158-166.
[39] M. Stan, A. Vasdilescu, S. Moscu and M. Zaharescu, IR spectrometry study of the gels in the SiO2-P2O5 system, Rev. Roum. Chim. 43 (1998) 425-432.
[40] H.S. Liu, T.S. Chin and S.W. Yung, FTIR and XPS studies of low-melting PbO-ZnO-P2O2 glasses, Mater. Chem. Phys. 50 (1997) 1-10.
[41] I.N. Chakraborty and R.A. Condrate, The vibrational spectra of glasses in the Na2O-SiO2-P2O5 system with a 1:1 SiO2:P2O5 molar ratio, Phys. Chem. Glasses 26 (1985) 68-73.
[42] Y.K. Kim and R.E. Tressler, Microstructural evolution of sol-gel-derived phosphosilicate gel with heat treatment, J. Mater. Sci. 29 (1994) 2531-2535.
[43] G. Lakshminarayana and M. Nogami, Proton conducting organic–inorganic composite membranes under anhydrous conditions synthesized from tetraethoxysilane/methyltriethoxysilane/trimethyl phosphate and 1-butyl-3 methylimidazolium tetrafluoroborate, Solid State Ionics 181 (2010) 760-766.
[44] C. Zhang, A.X. Yin, R. Jiang, J. Rong, L. Dong, T. Zhao, L.D. Sun, J. Wang, X. Chen and C.H. Yan, Time–Temperature indicator for perishable products based on kinetically programmable Ag overgrowth on Au nanorods, ACS Nano 7 (2013) 4561−4568.