با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 بخش شیمی، دانشکده علوم، دانشگاه یزد، یزد، ایران

2 بخش شیمی، دانشگاه آزاد اسلامی واحد دهلران، ایلام، ایران

چکیده

چکیده





در این تحقیق، نانولوله­های کربنی عامل­دار شده با 6-آمینو-4-(3و4-دی‌هیدروکسی‌فنیل)-3-متیل-1و4-دی هیدروپیرانو[2و3-c] پیرازول-5-کربونیتریل (مشتق پیرازول(APC)) سنتز و بعنوان حسگر هیدرازین بکار برده شد. خواص الکتروشیمیایی کامپوزیت APC-CNT  با تکنیک­های ولتامتری چرخه­ ای­، کرونوآمپرومتری و ولتامتری پالس تفاضلی مورد بررسی قرار گرفت. کامپوزیت APC-CNT یک جفت پیک اکسایش و کاهش، که به دلیل انتقال الکترون بین APC و الکترود کربن شیشه ­ای نشان می­ دهد. خواص الکتروکاتالیزوری کامپوزیت APC-CNT برای اکسایش هیدرازین به طور قابل توجهی نسبت به CNT تنها افزایش یافته است. پارامترهای سینتیکی کامپوزیت APC-CNT در حضور وعدم حضور هیدرازین با استفاده از روش­ های الکتروشیمیایی مطالعه شده است. الکترود اصلاح شده APC-CNT پاسخ ولتامتری بسیار خوبی را برای اکسایش هیدرازین با گستره خطی 01/0 میکرومولار تا 0/120 میکرومولار و حد تشخیص 6/8 نانومولار نشان می­دهد. همچنین الکترود APC-CNT انتخاب پذیری بالا، پایداری خوب و تکرارپذیری با RSD کمتر از %11/2 را نشان می ­دهد.

کلیدواژه‌ها

 
[1] A. Serov and C. Kwak, Direct hydrazine fuel cells: A review, Appl. Catal. B Environ. 98 (2010) 1–9.
[2] M. Vogel, A. Büldt and U. Karst, Hydrazine reagents as derivatizing agents in environmental analysis–a critical review, Fresenius. J. Anal. Chem. 366 (2000) 781–791.
[3] D.P. Elder, D. Snodin and A. Teasdale, Control and analysis of hydrazine, hydrazides and hydrazones—genotoxic impurities in active pharmaceutical ingredients (APIs) and drug products, J. Pharm. Biomed. Anal. 54 (2011) 900–910.
[4] G. Choudhary and H. Hansen, Human health perspective of environmental exposure to hydrazines: A review, Chemosphere. 37 (1998) 801–843.
[5] M.H. Nagaokaa, H. Nagaoka, K. Kondo, H. Akiyama and T. Maitani, Measurement of a genotoxic hydrazine, agaritine, and its derivatives by HPLC with fluorescence derivatization in the Agaricus mushroom and its products, Chem. Pharm. Bull. 54 (2006) 922–924.
[6] D.S. Kosyakov, A.S. Amosov, N. V Ul’yanovskii, A.V. Ladesov, Y.G. Khabarov and O.A. Shpigun, Spectrophotometric determination of hydrazine, methylhydrazine and 1, 1-dimethylhydrazine with preliminary derivatization by 5-nitro-2-furaldehyde, J. Anal. Chem. 72 (2017) 171–177.
[7] J.A. Oh and H.S. Shin, Simple determination of hydrazine in waste water by headspace solid-phase micro extraction and gas chromatography-tandem mass spectrometry after derivatization with trifluoro pentanedione, Anal. Chim. Acta. 950 (2017) 57–63.
[8] S. Kurbanoglu, M.A. Unal and S.A. Ozkan, Recent developments on electrochemical flow injection in pharmaceuticals and biologically important compounds, Electrochim. Acta. (2018).
[9] K. Tašev, I. Karadjova, T. Stafilov, Determination of inorganic and total arsenic in wines by hydride generation atomic absorption spectrometry, Microchim. Acta. 149 (2005) 55–60.
[10] Y. Zhu, P. Chandra and Y.B. Shim, Ultrasensitive and Selective Electrochemical Diagnosis of Breast Cancer Based on a Hydrazine–Au Nanoparticle–Aptamer Bioconjugate, Anal. Chem. 85 (2013) 1058–1064. doi:10.1021/ac302923k.
[11] B. Fang, C. Zhang, W. Zhang and G. Wang, A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode, Electrochim. Acta. 55 (2009) 178–182.
[12] M. Mazloum-Ardakani, M. Zokaie and A. Khoshroo, Carbon nanotube electrochemical sensor based on and benzofuran derivative as a mediator for the determination of levodopa, acetaminophen, and tryptophan, Ionics (Kiel). 21 (2015) 1741–1748.
[13] A. Khoshroo, L. Hosseinzadeh, A. Sobhani-Nasab, M. Rahimi-Nasrabadi and H. Ehrlich, Development of electrochemical sensor for sensitive determination of oxazepam based on silver-platinum core–shell nanoparticles supported on graphene, J. Electroanal. Chem. (2018) 61-66.
[14] A. Khoshroo, M. Mazloum-Ardakani and M. Forat-Yazdi, Enhanced performance of label-free electrochemical immunosensor for carbohydrate antigen 15-3 based on catalytic activity of cobalt sulfide/graphene nanocomposite, Sens. Act. B Chem. 255 (2018) 580–587.
[15] M. Mazloum-Ardakani, E. Amin-Sadrabadi and A. Khoshroo, Enhanced activity for non-enzymatic glucose oxidation on nickel nanostructure supported on PEDOT: PSS, J. Electroanal. Chem. 775 (2016) 116–120.
[16] M. Gerard, A. Chaubey and B.D. Malhotra, Application of conducting polymers to biosensors, Biosens. Bioelectron. 17 (2002) 345–359.
doi:http://dx.doi.org/10.1016/S09565663(01)00312-8.
[17] S. Radhakrishnan, K. Krishnamoorthy, C. Sekar, J. Wilson and S.J. Kim, A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets, Appl. Catal. B Environ. 148-149 (2014) 22–28.
 doi:https://doi.org/10.1016/j.apcatb.2013.10.044.
[18] J. Amani, A. Khoshroo and M. Rahimi-Nasrabadi, Electrochemical immunosensor for the breast cancer marker CA 15–3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol, Microchim. Acta. 185 (2018) 79.
[19] Y. Shi, Z. Liu, B. Zhao, Y. Sun, F. Xu and Y. Zhang, et al., Carbon nanotube decorated with silver nanoparticles via noncovalent interaction for a novel nonenzymatic sensor towards hydrogen peroxide reduction, J. Electroanal. Chem. 656 (2011) 29–33.
[20] G. Shen, X. Hu and S. Zhang, A signal-enhanced electrochemical immunosensor based on dendrimer functionalized-graphene as a label for the detection of α-1-fetoprotein, J. Electroanal. Chem. 717–718 (2014) 172–176. doi:http://dx.doi.org/10.1016/j.jelechem.2014.01.010.
[21] J.H. Jung, D.S. Cheon, F. Liu, K.B. Lee and T.S. Seo, A Graphene Oxide Based Immuno-biosensor for Pathogen Detection, Angew. Chemie. 122 (2010) 5844–5847. doi:10.1002/ange.201001428.
[22] M. Mazloum-Ardakani, B. Barazesh, A.R. Khoshroo, M. Moshtaghiun and M.H. Sheikhha, A new composite consisting of electrosynthesized conducting polymers, graphene sheets and biosynthesized gold nanoparticles for biosensing acute lymphoblastic leukemia, Bioelectrochem. 121 (2018) 38–45.
[23] H. Dai, Carbon nanotubes: synthesis, integration, and properties, Acc. Chem. Res. 35 (2002) 1035–1044.
[24] P.M. Ajayan, O.Z. Zhou, Applications of carbon nanotubes, in: Carbon Nanotub, Springer, 2001: pp. 391–425.
[25] G. Gao, D. Guo, C. Wang and H. Li, Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation, Electrochem. Commun. 9 (2007) 1582–1586.
[26] H.R. Zare and N. Nasirizadeh, Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine, Electrochim. Acta. 52 (2007) 4153–4160.
[27] M. Mazloum-Ardakani, A. Khoshroo and L. Hosseinzadeh, Simultaneous determination of hydrazine and hydroxylamine based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite, Sens. Act. B Chem. 214 (2015) 132–137. doi:http://dx.doi.org/10.1016/j.snb.2015.03.010.
[28] H. Beitollahi, S. Tajik and S. Jahani, Electrocatalytic Determination of Hydrazine and Phenol Using a Carbon Paste Electrode Modified with Ionic Liquids and Magnetic Core‐shell Fe3O4@ SiO2/MWCNT Nanocomposite, Electroanalysis. 28 (2016) 1093–1099.
[29] A.S. Kumar, R. Shanmugam, N. Vishnu, K.C. Pillai and S. Kamaraj, Electrochemical immobilization of ellagic acid phytochemical on MWCNT modified glassy carbon electrode surface and its efficient hydrazine electrocatalytic activity in neutral pH, J. Electroanal. Chem. 782 (2016) 215–224.
[30]D. Gioia and I.G. Casella, Pulsed electrodeposition of palladium nano-particles on coated multi-walled carbon nanotubes/nafion composite substrates: Electrocatalytic oxidation of hydrazine and propranolol in acid conditions, Sens. Act. B Chem. 237 (2016) 400–407.
[31] M. Mazloum-Ardakani and A. Khoshroo, Electrocatalytic properties of functionalized carbon nanotubes with titanium dioxide and benzofuran derivative/ionic liquid for simultaneous determination of isoproterenol and serotonin, Electrochim. Acta. 130 (2014) 634–641. doi:http://dx.doi.org/10.1016/j.electacta.2014.03.063.
[32] M. Mazloum-Ardakani, L. Hosseinzadeh and A. Khoshroo, Label-free electrochemical immunosensor for detection of tumor necrosis factor α based on fullerene-functionalized carbon nanotubes/ionic liquid, J. Electroanal. Chem. 757 (2015) 58–64.
[33] M. Mazloum-Ardakani, S.H. Ahmadi, Z.S. Mahmoudabadi and A. Khoshroo, Nano composite system based on fullerene-functionalized carbon nanotubes for simultaneous determination of levodopa and acetaminophen, Measurement. 91 (2016) 162–167.
[34] M. Mazloum‐Ardakani, M. Yavari and A. Khoshroo, Different Electrocatalytic Response Related to the Morphological Structure of TiO2 Nanomaterial: Hydroquinone as an Analytical Probe, Electroanalysis. 29 (2017) 231–237.
[35] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, et al., Chemical oxidation of multiwalled carbon nanotubes, Carbon N. Y. 46 (2008) 833–840.
[36] M. Sharp, M. Petersson and K. Edström, Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface, J. Electroanal. Chem. Interfacial Electrochem. 95 (1979) 123–130. doi:http://dx.doi.org/10.1016/S0022-0728(79)80227-2.
[37] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. Interfacial Electrochem. 101 (1979) 19–28.
doi:http://dx.doi.org/10.1016/S00220728(79)80075-3.
[38] A.J. Bard and L.R. Faulkner, Fundamentals and applications, Electrochem. Methods, 2nd Ed.; Wiley New York. (2001).
[39] Z. Galus, G.F. Reynolds, S. Marcinkiewicz, Fundamentals of electrochemical analysis, Ellis Horwood New York, 1976.