[1] J. Ogony, S. Mare, W. Wu, N. Ercal, High performance liquid chromatography analysis of 2-mercaptoethylamine (cysteamine) in biological samples by derivatization with N-(1-pyrenyl) maleimide (NPM) using fluorescence detection, J. Chromatogr. B 843 (2006) 57-62.
[2] K. Ngamdee, S. Kulchat, T. Tuntulani, W. Ngeontae, Fluorescence sensor based on d-penicillamine capped cadmium sulfide quantum dots for the detection of cysteamine, J. Lumin. 187 (2017) 260-268.
[3] H. Kataoka, Y. Imamura, H. Tanaka, M. Makita, Determination of cysteamine and cystamine by gas chromatography with flame photometric detection, J. Pharm. Biomed. Anal. 11 (1993) 963–969.
[4] T. Ahlenstiel-Grunow, N.K. Kanzelmeyer, K. Froede, M. Kreuzer, J. Drube, C. Lerch, L. Pape, Switching from immediate- to extended-release cysteamine in nephropathic cystinosis patients: a retrospective real-life single-center study, Pediatr. Nephrol. 32 (2017) 91–97.
[5] L.A. Smolin, J.A. Schneider, Measurement of total plasma cysteamine using high-performance liquid chromatography with electrochemical detection, Anal. Biochem. 168 (1988) 374–379.
[6] M. Stachowicz, B. Lehmann, A. Tibi, P. Prognon, V. Daurat, D. Pradeau, Determination of total cysteamine in human serum by a high-performance liquid chromatography with fluorescence detection, J. Pharm. Biomed. Anal. 17 (1998) 767–773.
[7] F. Chekin, R. Boukherroub, S. Szunerits, MoS2/reduced graphene oxide nanocomposite for sensitive sensing of cysteamine in presence of uric acid in human plasma, Mater. Sci. Eng. C 73 (2017) 627–632.
[8] D. Singh Swami, P. Kumar, R.K. Malik, M. Saini, D. Kumar , M.H. Jan, Cysteamine supplementation revealed detrimental effect on cryosurvival of buffalo sperm based on computer-assisted semen analysis and oxidative parameters, Anim. Reprod. Sci. 177 (2016) 56–64.
[9] A.J. Jonas, J.A. Schneider, A simple, rapid assay for cysteamine and other thiols. Analytical Biochemistry, Anal. Biochem. 114 (1981) 429–432.
[10] H. Kataoka, H. Tanaka, M. Makita, Determination of total cysteamine in urine and plasma samples by gas chromatography with flame photometric detection, J. Chromatogr. B 657 (1994) 9-13.
[11] M. Hsiung, Y.Y. Yeo, K. Itiaba, J.C. Crawhall, Cysteamine, penicillamine, glutathione, and their derivatives analyzed by automated ion exchange column chromatography, Biochem. Med. 19 (1978) 305–317.
[12] A. Özcan, D. Topçuoğulları, Voltammetric determination of 17-β-estradiol by cysteamine self-assembled gold nanoparticle modified fumed silica decorated graphene nanoribbon nanocomposite, Sens. Actuators B 250 (2017) 85–90.
[13] T.F. Yuan, S.T. Wang, Y. Li, Quantification of menadione from plasma and urine by a novel cysteamine-derivatization based UPLC–MS/MS method, J. Chromatogr. B 1063 (2017) 107-111.
[14] A. Wong, A.M. Santos, O. Fatibello-Filho, Simultaneous determination of dopamine and cysteamine by flow injection with multiple pulse amperometric detection using a boron-doped diamond electrode, Diam. Relat. Mater. 85 (2018) 68–73.
[15] M. Saraji, M. Khalili Boroujeni, A.A.H. Bidgoli, Comparison of dispersive liquid–liquid microextraction and hollow fiber liquid–liquid–liquid microextraction for the determination of fentanyl, alfentanil, and sufentanil in water and biological fluids by high-performance liquid chromatography, Anal. Bioanal. Chem. 400 (2011) 2149-2153.
[16] S. Tajik, M.A. Taher, First Report for Electrochemical Determination of Levodopa and Cabergoline: Application for Determination of Levodopa and Cabergoline in Human Serum, Urine and Pharmaceutical Formulations, Electroanalysis 26 (2014) 796-806.
[17] G. Buica, L. Lazar, E. Saint-Aman, V. Tecuceanu, C. Dumitriu, I. Anton, A. Stoian, E. Ungureanu, Ultrasensitive modified electrode based on poly(1H-pyrrole-1-hexanoic acid) for Pb(II) detection, Sens. Actuators B 246 (2017) 434-443.
[18] S.Z. Mohammadi, H. Beitollahi, M. Hassanzadeh, Voltammetric determination of tryptophan using a carbon paste electrode modified with magnesium core shell nanocomposite and ionic liquids, Anal. Bioanal. Chem. 5 (2018) 55-65.
[19] M. Mazloum-Ardakani, H. Beitollahi, B. Ganjipour, H. Naeimi, Novel Carbon Nanotube Paste Electrode for Simultaneous Determination of Norepinephrine, Uric Acid and D-Penicillamine, Inter. J. Electrochem. Sci. 5 (2010) 531–546.
[20] H. Parham, N. Rahbar, Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode, J. Hazard. Mater. 177 (2010) 1077-1084.
[21] H. Karimi-Maleh, M. Moazampour, H. Ahmar H. Beitollahi, A.A. Ensafi, A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan, Measurement 51 (2014) 91-99.
[22] S.Z. Mohammadi, H. Beitollahi, H. Fadaeian, Voltammetric Determination of Isoproterenol using a Graphene Oxide Nano Sheets Paste Electrode, J. Anal. Chem. 73 (2018) 705-712.
[23] E. Molaakbari, A. Mostafavi, H. Beitollahi, Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine, Sens. Actuat. B 208 (2015) 195-203.
[24] R. Suresh, R. Prabu, A. Vijayaraj, K. Giribabu, A. Stephen, V. Narayanan, Fabrication of α-Fe2O3 Nanoparticles for the Electrochemical Detection of Uric Acid, Synth. React. Inorg. Met. Org. Chem. 42 (2012) 303-307.
[25] S.Z. Mohammadi, H. Beitollahi, N. Mohammad Rahimi, Voltammetric Determination of Epinephrine and Uric Acid Using Modified Graphene Oxide Nano Sheets Paste Electrode, J. Anal. Chem. 74 (2019) 345–354.
[26] H. Beitollahi, F. Garkani-Nejad, Graphene Oxide/ZnO Nano Composite for Sensitive and Selective Electrochemical Sensing of Levodopa and Tyrosine Using Modified Graphite Screen Printed Electrode, Electroanalysis 28 (2016) 2237-2244.
[27] S.Z. Mohammadi, A. Seyedi, Preconcentration of cadmium and copper ions on magnetic core–shell nanoparticles for determination by flame atomic absorption, Toxicol. Environ. Chem. 98 (2016) 705-713.
[28] S.Z. Mohammadi, H. Beitollahi, M. Mousavi, Determination of Hydroxylamine Using a Carbon Paste Electrode Modified with Graphene Oxide Nano Sheets, Rus. J. Electrochem. 53 (2017) 374-379.
[29] H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3, 4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide, Anal. Chem. 80 (2008) 9848-9851.
[30] J.P. Metters, R.O. Kadara, S.E. Banks, New directions in screen printed electroanalytical sensors: an overview of recent developments, Analyst 136 (2011) 1067-1076.
[31] S.Z. Mohammadi, H. Beitollahi, N. Nikpour, R. Hosseinzadeh, Electrochemical Sensor for Determination of Ascorbic Acid Using a 2Chlorobenzoyl Ferrocene/Carbon Nanotube Paste Electrode, Anal. Bioanal. Chem. Res. 3 (2016) 187-194.
[32] H. Mahmoudi-Moghaddam, H. Beitollahi, S. Tajik, Sh. Jahani, H. Khabazzadeh, R. Alizadeh, Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor, Rus. J. Electrochem. 53 (2017) 452-460.
[33] H. Jo, J. Her, H. Lee, Y. B. Shim, C. Ban, Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes, Talanta 165 (2017) 442-448.
[34] M.R. Ganjali, F. Garkani- Nejad, H. Beitollahi, Sh. Jahani, M. Rezapour, B. Larijani, Highly Sensitive Voltammetric Sensor for Determination of Ascorbic Acid Using Graphite Screen Printed Electrode Modified with ZnO/Al2O3 Nanocomposite, Int. J. Electrochem. Sci. 12 (2017) 3231-3240.
[35] F. Khosrow-pour, M. Aghazadeh, B. Sabour, S. Dalvand, Large-scale synthesis of uniform lanthanum oxide nanowires via template-free deposition followed by heat-treatment,
Ceramics Int. 39 (2013) 9491-9498.
[36] F.L.S. Carvalho, Y.J.O. Asencios, A.M.B. Rego, E.M. Assaf, Hydrogen production by steam reforming of ethanol over Co3O4/La2O3/CeO2 catalysts synthesized by one-step polymerization method, Appl. Catal. A 483 (2014) 52-59.
[37] Y. Xu, Y. Peng, X. Zheng, K.D. Dearn, H. Xu, X. Hu, Synthesis and tribological studies of nanoparticle additives for pyrolysis bio-oil formulated as a diesel fuel, Energy 83 (2015) 80-88.
[38] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Second ed., Wiley, New York (2001).
[39] V. Arabali, H. Karim-Maleh, Electrochemical determination of cysteamine in the presence of guanine and adenine using a carbon paste electrode modified with N- (4-hydroxyphenyl)-3,5-dinitrobenzamide and magnesium oxide nanoparticles, Anal. Method 8 (2016) 5604-5610.
[40] M. Keyvanfard, S. Sami, H. Karimi-Maleh, K. Alizad, Electrocatalytic determination of cysteamine using multiwall carbon nanotube paste electrode in the presence of 3,4-dihydroxycinnamic acid as a homogeneous mediator, J. Brazil. Chem. Soc. 24 (2013) 32-39.
[41] A.A. Ensafi, H. Karimi-Maleh, A voltammetric sensor based on modified multiwall carbon nanotubes for cysteamine determination in the presence of tryptophan using p-aminophenol as a mediator, Electroanalysis 22 (2010) 2558–2568.
[42] H. Karimi-Maleh, P. Biparva, M. Hatami, A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4-ethybenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid, Biosens. Bioelectron. 48 (2013) 270-275.
[43] M. Keyvanfard, A.A. Ensafi, H. Karimi-Maleh, A new strategy for simultaneous determination of cysteamine in the presence of high concentration of tryptophan using vinylferrocene-modified multiwall carbon nanotubes paste electrode”, J. Solid State Electrochem. 16 (2012) 2949–2955.