In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Chemistry, Payame Noor University, Tehran, Iran

2 Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran

3 Environment Department, Institute of Science and High Technology and EnvironmentalSciences, Graduate University of Advanced Technology, Kerman, Iran

Abstract

In the present study, the cysteamine electrochemical features were explored by La2O3/Co3O4 nanocomposite-modified screen printed electrode (La2O3/Co3O4/SPE) using voltammetry, chronoamperometry, and differential pulse voltammetry (DPV) techniques. The synthesized La2O3/Co3O4 nanocomposite qualities were considered by SEM, FT-IR, and XRD analyses. Exploiting the modified SPE electrode with La2O3/Co3O4 nanocomposite, the cysteamine electrooxidation kinetics was significantly enhanced by reducing the anodic over-potential. The constructed La2O3/Co3O4/SPE revealed voltammetric reactions of high sensitivity for cysteamine, resulting in a highly appropriate means of trace levels cysteamine measurement. The electrooxidation peak currents for cysteamine were found to change linearly in relation to its concentrations (1.0–700.0 μM) in detection limit of 0.3 μM. La2O3/Co3O4/SPE was utilized for the cysteamine quantification in real specimens.

Keywords

[1] J. Ogony, S. Mare, W. Wu, N. Ercal, High performance liquid chromatography analysis of 2-mercaptoethylamine (cysteamine) in biological samples by derivatization with N-(1-pyrenyl) maleimide (NPM) using fluorescence detection, J. Chromatogr. B 843 (2006) 57-62.
[2] K. Ngamdee, S. Kulchat, T. Tuntulani, W. Ngeontae, Fluorescence sensor based on d-penicillamine capped cadmium sulfide quantum dots for the detection of cysteamine, J. Lumin. 187 (2017) 260-268.
[3] H. Kataoka, Y. Imamura, H. Tanaka, M. Makita, Determination of cysteamine and cystamine by gas chromatography with flame photometric detection, J. Pharm. Biomed. Anal. 11 (1993) 963–969.
[4] T. Ahlenstiel-Grunow, N.K. Kanzelmeyer, K. Froede, M. Kreuzer, J. Drube, C. Lerch, L. Pape, Switching from immediate- to extended-release cysteamine in nephropathic cystinosis patients: a retrospective real-life single-center study, Pediatr. Nephrol. 32 (2017) 91–97.
[5] L.A. Smolin, J.A. Schneider, Measurement of total plasma cysteamine using high-performance liquid chromatography with electrochemical detection, Anal. Biochem. 168 (1988) 374–379.
[6] M. Stachowicz, B. Lehmann, A. Tibi, P. Prognon, V. Daurat, D. Pradeau, Determination of total cysteamine in human serum by a high-performance liquid chromatography with fluorescence detection, J. Pharm. Biomed. Anal. 17 (1998) 767–773.
[7] F. Chekin, R. Boukherroub, S. Szunerits, MoS2/reduced graphene oxide nanocomposite for sensitive sensing of cysteamine in presence of uric acid in human plasma, Mater. Sci. Eng. C 73 (2017) 627–632.
[8] D. Singh Swami, P. Kumar, R.K. Malik, M. Saini, D. Kumar , M.H. Jan, Cysteamine supplementation revealed detrimental effect on cryosurvival of buffalo sperm based on computer-assisted semen analysis and oxidative parameters, Anim. Reprod. Sci. 177 (2016) 56–64.
[9] A.J. Jonas, J.A. Schneider, A simple, rapid assay for cysteamine and other thiols. Analytical Biochemistry, Anal. Biochem. 114 (1981) 429–432.
[10] H. Kataoka, H. Tanaka, M. Makita, Determination of total cysteamine in urine and plasma samples by gas chromatography with flame photometric detection, J. Chromatogr. B 657 (1994) 9-13.
[11] M. Hsiung, Y.Y. Yeo, K. Itiaba, J.C. Crawhall, Cysteamine, penicillamine, glutathione, and their derivatives analyzed by automated ion exchange column chromatography, Biochem. Med. 19 (1978) 305–317.
 [12] A. Özcan, D. Topçuoğulları, Voltammetric determination of 17-β-estradiol by cysteamine self-assembled gold nanoparticle modified fumed silica decorated graphene nanoribbon nanocomposite, Sens. Actuators B 250 (2017) 85–90.
[13] T.F. Yuan, S.T. Wang, Y. Li, Quantification of menadione from plasma and urine by a novel cysteamine-derivatization based UPLC–MS/MS method, J. Chromatogr. B 1063 (2017) 107-111.
[14] A. Wong, A.M. Santos, O. Fatibello-Filho, Simultaneous determination of dopamine and cysteamine by flow injection with multiple pulse amperometric detection using a boron-doped diamond electrode, Diam. Relat. Mater. 85 (2018) 68–73.
[15] M. Saraji, M. Khalili Boroujeni, A.A.H. Bidgoli, Comparison of dispersive liquid–liquid microextraction and hollow fiber liquid–liquid–liquid microextraction for the determination of fentanyl, alfentanil, and sufentanil in water and biological fluids by high-performance liquid chromatography, Anal. Bioanal. Chem. 400 (2011) 2149-2153.
[16] S. Tajik, M.A. Taher, First Report for Electrochemical Determination of Levodopa and Cabergoline: Application for Determination of Levodopa and Cabergoline in Human Serum, Urine and Pharmaceutical Formulations, Electroanalysis 26 (2014) 796-806.
[17] G. Buica, L. Lazar, E. Saint-Aman, V. Tecuceanu, C. Dumitriu, I. Anton, A. Stoian, E. Ungureanu, Ultrasensitive modified electrode based on poly(1H-pyrrole-1-hexanoic acid) for Pb(II) detection, Sens. Actuators B 246 (2017) 434-443.
[18] S.Z. Mohammadi, H. Beitollahi, M. Hassanzadeh, Voltammetric determination of tryptophan using a carbon paste electrode modified with magnesium core shell nanocomposite and ionic liquids, Anal. Bioanal. Chem. 5 (2018) 55-65.
[19] M. Mazloum-Ardakani, H. Beitollahi, B. Ganjipour, H. Naeimi, Novel Carbon Nanotube Paste Electrode for Simultaneous Determination of Norepinephrine, Uric Acid and D-Penicillamine, Inter. J. Electrochem. Sci. 5 (2010) 531–546.
[20] H. Parham, N. Rahbar, Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode, J. Hazard. Mater. 177 (2010) 1077-1084.
[21] H. Karimi-Maleh, M. Moazampour, H. Ahmar H. Beitollahi, A.A. Ensafi, A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan, Measurement 51 (2014) 91-99.
[22] S.Z. Mohammadi, H. Beitollahi, H. Fadaeian, Voltammetric Determination of Isoproterenol using a Graphene Oxide Nano Sheets Paste Electrode, J. Anal. Chem. 73 (2018) 705-712.
[23] E. Molaakbari, A. Mostafavi, H. Beitollahi, Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine, Sens. Actuat. B 208 (2015) 195-203.
[24] R. Suresh, R. Prabu, A. Vijayaraj, K. Giribabu, A. Stephen, V. Narayanan, Fabrication of α-Fe2O3 Nanoparticles for the Electrochemical Detection of Uric Acid, Synth. React. Inorg. Met. Org. Chem. 42 (2012) 303-307.
[25] S.Z. Mohammadi, H. Beitollahi, N. Mohammad Rahimi, Voltammetric Determination of Epinephrine and Uric Acid Using Modified Graphene Oxide Nano Sheets Paste Electrode, J. Anal. Chem. 74 (2019) 345–354.
[26] H. Beitollahi, F. Garkani-Nejad, Graphene Oxide/ZnO Nano Composite for Sensitive and Selective Electrochemical Sensing of Levodopa and Tyrosine Using Modified Graphite Screen Printed Electrode, Electroanalysis 28 (2016) 2237-2244.
[27] S.Z. Mohammadi, A. Seyedi, Preconcentration of cadmium and copper ions on magnetic core–shell nanoparticles for determination by flame atomic absorption, Toxicol. Environ. Chem. 98 (2016) 705-713.
[28] S.Z. Mohammadi, H. Beitollahi, M. Mousavi, Determination of Hydroxylamine Using a Carbon Paste Electrode Modified with Graphene Oxide Nano Sheets, Rus. J. Electrochem. 53 (2017) 374-379.
[29] H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3, 4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide, Anal. Chem. 80 (2008) 9848-9851.
[30] J.P. Metters, R.O. Kadara, S.E. Banks, New directions in screen printed electroanalytical sensors: an overview of recent developments, Analyst 136 (2011) 1067-1076.
[31] S.Z. Mohammadi, H. Beitollahi, N. Nikpour, R. Hosseinzadeh, Electrochemical Sensor for Determination of Ascorbic Acid Using a 2Chlorobenzoyl Ferrocene/Carbon Nanotube Paste Electrode, Anal. Bioanal. Chem. Res. 3 (2016) 187-194.
[32] H. Mahmoudi-Moghaddam, H. Beitollahi, S. Tajik, Sh. Jahani, H. Khabazzadeh, R. Alizadeh, Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor, Rus. J. Electrochem. 53 (2017) 452-460.
[33] H. Jo, J. Her, H. Lee, Y. B. Shim, C. Ban, Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes, Talanta 165 (2017) 442-448.
[34] M.R. Ganjali, F. Garkani- Nejad, H. Beitollahi, Sh. Jahani, M. Rezapour, B. Larijani, Highly Sensitive Voltammetric Sensor for Determination of Ascorbic Acid Using Graphite Screen Printed Electrode Modified with ZnO/Al2O3 Nanocomposite, Int. J. Electrochem. Sci. 12 (2017) 3231-3240.
[35] F. Khosrow-pour, M. Aghazadeh, B. Sabour, S. Dalvand, Large-scale synthesis of uniform lanthanum oxide nanowires via template-free deposition followed by heat-treatment, Ceramics Int. 39 (2013) 9491-9498.
[36] F.L.S. Carvalho, Y.J.O. Asencios, A.M.B. Rego, E.M. Assaf, Hydrogen production by steam reforming of ethanol over Co3O4/La2O3/CeO2 catalysts synthesized by one-step polymerization method, Appl. Catal. A 483 (2014) 52-59.
[37] Y. Xu, Y. Peng, X. Zheng, K.D. Dearn, H. Xu, X. Hu, Synthesis and tribological studies of nanoparticle additives for pyrolysis bio-oil formulated as a diesel fuel, Energy 83 (2015) 80-88.
[38] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Second ed., Wiley, New York (2001).
[39] V. Arabali, H. Karim-Maleh, Electrochemical determination of cysteamine in the presence of guanine and adenine using a carbon paste electrode modified with N- (4-hydroxyphenyl)-3,5-dinitrobenzamide and magnesium oxide nanoparticles, Anal. Method 8 (2016) 5604-5610.
[40] M. Keyvanfard, S. Sami, H. Karimi-Maleh, K. Alizad, Electrocatalytic determination of cysteamine using multiwall carbon nanotube paste electrode in the presence of 3,4-dihydroxycinnamic acid as a homogeneous mediator, J. Brazil. Chem. Soc. 24 (2013) 32-39.
[41] A.A. Ensafi, H. Karimi-Maleh, A voltammetric sensor based on modified multiwall carbon nanotubes for cysteamine determination in the presence of tryptophan using p-aminophenol as a mediator, Electroanalysis 22 (2010) 2558–2568.
[42] H. Karimi-Maleh, P. Biparva, M. Hatami, A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4-ethybenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid, Biosens. Bioelectron. 48 (2013) 270-275.
[43] M. Keyvanfard, A.A. Ensafi, H. Karimi-Maleh, A new strategy for simultaneous determination of cysteamine in the presence of high concentration of tryptophan using vinylferrocene-modified multiwall carbon nanotubes paste electrode”, J. Solid State Electrochem. 16 (2012) 2949–2955.