In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

Department of Amad and Defense Technology, Supreme University and Research Institute of National Defense and Strategic Researches, Tehran, Iran

Abstract

Generally, traditional bioanalytical methods including in vitro or ex vivo are associated with the limitations and drawbacks in the living systems analysis. However, the in vivo sampling technique is an excellent procedure to improve accuracy and performing the on–line and in–situ biological analyses. In this regard, solid–phase microextraction (SPME) as a simple, sensitive, solventless and noninvasive sample preparation technique has been considered by researchers in in vivo sampling, in recent years. This review briefly describes the use of in vivo SPME as a sample preparation method to study the living systems involving plants and animals (especially metabolomics and clinical researches). Also, biocompatible coatings and design innovations that use to enhance the sensitivity and functioning of the method have been investigated. Finally, the challenges facing the development in vivo SPME method are investigated and forthcoming trends for the better performance of bioanalytical method are offered.

Keywords

 
[1]     J.D. Wulfkuhle, L.A. Liatta, E.F. Petricoin, Proteomic applications for the early detection of cancer, Nat. Rev. Cancer. 3 (2003) 267–275.
[2]     T. Abaffy, R. Duncan, D.D. Riemer, O. Tietje, G. Elgart, C. Milikowski, Differential volatile signatures from skin, naevi and melanoma: a novel approach to detect a pathological process, BMC Bioinformatics. 16 (2015) 158–170.
[3]     D. Vuckovic, Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry, Anal. Bioanal. Chem. 403 (2012) 1523–1548.
[4]     Z.G. Gong, J. Hu, X. Wu, Y.J. Xu, The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics, Crit. Rev. Anal. Chem. 47 (2017) 325–331.
[5]     D. Vuckovic, Improving metabolome coverage and data quality: Advancing metabolomics and lipidomics for biomarker discovery, Chem. Commun. 54 (2018) 6728–6749.
[6]     N. Reyes-Garcés, E. Gionfriddo, Recent developments and applications of solid phase microextraction as a sample preparation approach for mass spectrometry-based metabolomics and lipidomics, Trends Anal. Chem. 113 (2019) 172–181.
[7]     H.L. Lord, X. Zhang, F.M. Musteata, D. Vuckovic, J. Pawliszyn, In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites. Nat. Protoc. 6 (2011) 896–924.
[8]     Q.H. Zhang, L.D. Zhou, H. Chen, C.Z. Wang, Z.N. Xia, C.S. Yuan, Solid-phase microextraction technology for in vitro and in vivo metabolite analysis, Trends Anal. Chem. 80 (2016) 57–65.
[9]     R.P. Belardi, J. Pawliszyn, Application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns, Water Pollut. Res. J. Can. 24 (1989) 179–191.
[10] N. Reyes-Garcés, E. Gionfriddo, G.A. Gómez-Ríos, M.N. Alam, E. Boyacl, B. Bojko, V.  Singh, J. Grandy, J. Pawliszyn, Advances in Solid Phase Microextraction and Perspective on Future Directions, Anal. Chem. 90 (2018) 302–360.
[11] E.A. Souza-Silva, E. Gionfriddo, J. Pawliszyn, A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis, Trends Anal. Chem. 71 (2015) 236–248.
[12] B. Bojko, N. Reyes-Garcés, V. Bessonneau, K. Goryński, F. Mousavi, E. Souza Silva, J. Pawliszyn, Solid-phase microextraction in metabolomics, Trends Anal. Chem. 61 (2014) 168–180.
[13] H. Kataoka, H.L. Lord, J. Pawliszyn, Applications of solid-phase microextraction in food analysis, J. Chromatogr. A. 880 (2000) 35–62.
[14] D. Vuckovic, I. Lannoy, B. Gien, Y. Yang, F.M. Musteata, R. Shirey, In vivo solid-phase microextraction for single rodent pharmacokinetics studies of carbamazepine and carbamazepine- 10,11-epoxide in mice, J. Chromatogr. A. 1218 (201) 13367–3375.
[15] J. Pereira, C.L. Silva, R. Perestrelo, J. Gonçalves, V. Alves, J.S. Câmara, Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends, Anal. Bioanal. Chem. 406 (2014) 2101–2122.
[16] X. Zhang, K.D. Oakes, S. Wang, M.R. Servos, S. Cui, J. Pawliszyn, In vivo sampling of environmental organic contaminants in fish by solid-phase microextraction, Trends Anal. Chem. 32 (2012) 31–39.
[17] E. Cudjoe, B. Bojko, P Togunde, J. Pawliszyn, In vivo solid-phase microextraction for tissue bioanalysis, Bioanalysis, 21 (2012) 2605–26194.
[18] K. Lanckmans, S. Sarre, I. Smolders, Y. Michotte, Quantitative liquid chromatography/mass spectrometry for the analysis of microdialysates. Talanta 74 (2008) 458–469.
[19] G. Vas, K. Vékey, Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis, J. Mass Spectrom. 39 (2004) 233–254.
[20] J. Pawliszyn, SPME commercial devices and fiber coatings, In: Handbook of Solid Phase Microextraction, (Ed, J. Pawliszyn) Chemical Industry Press, China (2009) pp. 315-324.
[21] J.V. Hinshaw, C. Serveron, "Solid-Phase Microextraction", LC·GC Europe, GC Connections. Orlando (2003) pp. 2–5.
[22] N.H. Godage, E. Gionfriddo, A critical outlook on recent developments and applications of matrix compatible coatings for Solid Phase Microextraction, Trends Anal. Chem. 111 (2019) 220–228.
[23] M. Vert, Y. Doi, K.H. Hellwich, Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl. Chem. 84 (2012) 1–10.
[24] É.A. Souza Silva, J. Pawliszyn, Optimization of fiber coating structure enables direct immersion solid phase microextraction and high-throughput determination of complex samples, Anal. Chem. 84 (2012) 6933–6938.
[25] M.L. Musteata, F.M. Musteata, J. Pawliszyn, Biocompatible solid-phase microextraction coatings based on polyacrylonitrile and solid-phase extraction phases., Anal. Chem. 79 (2007) 6903–6911.
[26] J. Qiu, G. Chen, S. Liu, T. Zhang, J. Wu, F. Wang, J. Xu, Y. Liu, F. Zhu, G. Ouyang, Bioinspired Polyelectrolyte-Assembled Graphene-Oxide-Coated C18 Composite Solid-Phase Microextraction Fibers for in Vivo Monitoring of Acidic Pharmaceuticals in Fish, Anal. Chem. 88 (2016) 5841–5848.
[27] C. Cagliero, H. Nan, C. Bicchi, J.L. Anderson, Matrix-compatible sorbent coatings based on structurally-tuned polymeric ionic liquids for the determination of acrylamide in brewed coffee and coffee powder using solid-phase microextraction, J. Chromatogr. A. 1459 (2016) 17–23.
[28] E. Gionfriddo, E. Boyaci, J. Pawliszyn, New Generation of Solid-Phase Microextraction Coatings for Complementary Separation Approaches: A Step toward Comprehensive Metabolomics and Multiresidue Analyses in Complex Matrices, Anal. Chem. 89( 2017) 4046–4054.
[29] G. Ouyang, D. Vuckovic, J. Pawliszyn, Nondestructive Sampling of Living Systems Using in Vivo Solid-Phase Microextraction, Chem. Rev. 111 (2011) 2784–2814.
[30] E.S. Silva, J. Pawliszyn, Optimization of Fiber Coating Structure Enables Direct Immersion Solid Phase Microextraction and High-Throughput Determination of Complex Samples, Anal. Chem. 84 (2012) 6933–6938.
[31] S. Risticevic, E.A. Souza-Silva, J.R. DeEll, J. Cochran, J., Pawliszyn, Capturing plant metabolome with direct-immersion in vivo solid phase microextraction of plant tissues, Anal. Chem. 88 (2016) 1266–1274.
[32] D. Vuckovic, R. Shirey, Y. Chen, L. Sidisky, C. Aurand, K. Stenerson, J. Pawliszyn, In vitro evaluation of new biocompatible coatings for solid-phase microextraction: implications for drug analysis and in vivo sampling applications, Anal. Chim. Acta 638 (2009) 175–181.
[33] F.S. Mirnaghi, Y. Chen, L.M. Sidisky, J. Pawliszyn, Optimization of the coating procedure for high throughput 96-blade solid phase microextraction system coupled with LC–MS/MS for analysis of complex samples. Anal. Chem. 83 (2011) 6018–6025.
[34] V. Bessonneau, J. Ings, M. McMaster, R. Smith, L. Bragg, M. Servos, J. Pawliszyn, In vivo tissue sampling using solid-phase microextraction for non-lethal exposome-wide association study of CYP1A1 induction in Catostomus commersonii, Environ. Res. 151 (2016) 216–223.
[35] B. Bojko, K. Gorynski, G.A. Gomez-Rios, J.M. Knaak, T. Machuca, E. Cudjoe, V.N. Spetzler, M. Hsin, M. Cypel, M. Selzner, M.Y. Liu, S. Keshjavee, J. Pawliszyn, Low invasive in vivo tissue sampling for monitoring biomarkers and drugs during surgery, Lab. Investig. 94 (2014) 586–594.
[36] B. Bojko, K. Gorynski, G.A. Gomez-Rios, J.M. Knaak, T. Machuca, V.N.;Spetzler, E. Cudjoe, M. Hsin, M. Cypel, M Selzner, M.Y. Liu, S. Keshavjee, J. Pawliszyn, Solid phase microextraction fills the gap in tissue sampling protocols, Anal. Chim. Acta 803) 2013( 75–81.
[37] V. Bessonneau, B. Bojko, A. Azad, S. Keshavjee, S. Azad, J. Pawliszyn, Determination of bronchoalveolar lavage bile acids by solid phase microextraction liquid chromatography-tandem mass spectrometry in combination with metabolite profiling: comparison with enzymatic assay, J. Chromatogr. A 1367 )2014( 33–38.
[38] E. Cudjoe, B. Bojko, I. Lannoy, V. Saldivia, J. Pawliszyn, Solid-phase microextraction: a complementary in vivo sampling method to microdialysis, Angew. Chem. Int. Ed. 52 (2013) 12124–12126.
[39] A. Roszkowska, M. Yu, V. Bessonneau, L. Bragg, M. Servos, J. Pawliszyn, Metabolome profiling of fish muscle tissue exposed to benzo[alpha]pyrene using in vivo solid-phase microextraction, Environ. Sci. Technol. Lett. 5 (2018) 431–435.
[40] T. Win Shwe, D. Mitsushima, D. Nakajima, S. Ahmed, S. Yamamoto, S. Tsukahara, M. Kakeyama, S. Goto, H. Fujimaki, Toluene induces rapid and reversible rise of hippocampal glutamate and taurine neurotransmitter levels in mice, Toxicol. Lett. 168 (2007) 75–82.
[41] N. Reyes-Garces, "Solid Phase Microextraction as a Sample Preparation Tool for Targeted and Untargeted Analysis of Biological Matrices" Ph.D. Thesis, University of Waterloo, )2017(.
[42] G. Chen, X. Fang, Q. Chen, J. Zhang, Z. Zhong, J. Xu, F. Zhu, G. Ouyang, Boronic acid decorated defective metal-organic framework nanoreactors for highefficiency carbohydrates separation and labeling, Adv. Funct. Mater. 27) 2017( 1702126.
[43] S. Wang, K.D. Oakes, L.M. Bragga, J. Pawliszyn, G.D. Mark, R. Servos, Validation and use of in vivo solid phase micro-extraction (SPME) for the detection of emerging contaminants in fish, Chemosphere 85 (2011) 1472–1480.
[44] G. Ouyang, D. Vuckovic, J. Pawliszyn, Nondestructive sampling of living systems using in vivo solid-phase microextraction, Chem. Rev. 111 (2011) 2784–2814.
[45] J.J. Poole, J.J. Grandy, M. Yu, E. Boyaci, G.A. Gomez-Rios, N. Reyes-Garces, B. Bojko, H.V. Heide, J. Pawliszyn, Deposition of a Sorbent into a Recession on a Solid Support To Provide a New, Mechanically Robust Solid-Phase Microextraction Device, Anal. Chem. 89 (2017) 8021–8026.
[46] O.P. Togunde, H. Lord, K.D. Oakes, M.R. Servos, J. Pawliszyn, Development and evaluation of a new in vivo solid-phase microextraction sampler, J. Sep. Sci. 36 (2013) 219–223.
[47] E.A. Souza Silva, S. Risticevic, J. Pawliszyn, Recent trends in SPME concerning sorbent materials, configurations, and in vivo applications, Trends Anal. Chem. 43 (2013) 24–36.
[48] S. Lendor, S.A. Hassani, E. Boyaci, V. Singh, T. Womelsdorf, J. Pawliszyn, A solid phase microextraction-based miniaturized probe and protocol for extraction of neurotransmitters from brains in vivo, Anal. Chem. 91 (2019) 4896–4905.
[49] J. Xu, R. Wu, S. Huang, M. Yang, Y. Liu, Y. Liu, R. Jiang, F. Zhu, G. Ouyang, Polyelectrolyte microcapsules dispersed in silicone rubber for in vivo sampling in fish brains, Anal. Chem. 87 (2015) 10593–10599.
[50] S.A. Hassani, S. Lendor, E. Boyaci, J. Pawliszyn, T. Womelsdorf, Multi-Neuromodulator Measurements Across Fronto-Striatal Network Areas of the Behaving Macaque using Solid-Phase Microextraction. https://doi.org/10.1101/534651.
[51] W. Filipiak, B. Bojko, SPME in clinical, pharmaceutical, and biotechnological research - How far are we from daily practice?, Trends Anal. Chem. 115 (2019) 203–213.
[52] F. Zhu, J. Xu, Y. Ke, S. Huang, F. Zeng, T. Luan, G. Ouyang, Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: A review, Anal. Chim. Acta 794 (2013) 1402–1410.
[53] H.J. Yan, H. Zhang, Q.G. Wang, H.Y. Jian, X.Q. Qiu, J.H. Wang, K.X. Tang, Isolation and identification of a putative scent-related gene RhMYB1 from rose, Mol. Biol. Rep. 38 (2011) 4475–4482.
[54] T. Kaewtathip, S. Charoenrein, Changes in volatile aroma compounds of pineapple (Ananas comosus) during freezing and thawing, Int. J. Food Sci. Technol. 47 (2012) 985–990.
[55] A. Manzo, S. Panseri, I. Vagge, A. Giorgi, Volatile fingerprint of Italian populations of orchids using solid phase microextraction and gas chromatography coupled with mass spectrometry, Molecules 19 (2014) 7913–7936.
[56] C. Zini, F. Augusto, T.E. Christensen, B.P. Smith, E.B. Caramão, J. Pawliszyn, Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME., Anal. Chem. 73 )2001 (4729–4935.
[57] J.C. Verdonk, C. Ric de Vos, H.A. Verhoeven, M.A. Haring, A.J. van Tunen, R.C. Schuurink, Regulation of floral scent production in petunia revealed by targeted metabolomics, Phytochemistry 62 )2003( 997–1008.
[58] E.E. Stashenko, S.A. Ordonez, N.A. Marin, J.R. Martinez, Determination of the Volatile and Semi-volatile Secondary Metabolites, and Aristolochic Acids in Aristolochia ringens Vahl, J. Chromatogr. Sci. 47 (2009) 817–821.
[59] G. Chen, J. Qiu, J. Xu, X. Fang, Y. Liu, S. Liu, S. Wei, R. Jiang, T. Luan, F. Zeng, F. Zhu, G. Ouyang, A novel probe based on phenylboronic acid functionalized carbon nanotubes for ultrasensitive carbohydrate determination in biofluids and semi- solid biotissues, Chem. Sci. 7 (2016) 1487–1495.
[60] F.M. Musteata, M. Sandoval, J.C. Ruiz-Macedo, K. Harrison, D. McKenna, W. Millington, Evaluation of in vivo solid phase microextraction for minimally invasive analysis of nonvolatile phytochemicals in Amazonian plants, Anal. Chim. Acta. 933 (2016) 124–133.
[61] G. Song, J. Xiao, C. Deng, X. Zhang, Y. Hu Use of solid-phase microextraction as a sampling technique for the characterization of volatile compounds emitted from Chinese daffodil flowers, J. Anal. Chem. 62 (2007) 674–679.
[62] Z.Y. Yang, S. Endo, A. Tanida, K.J. Kai, N. Watanabe, J. Agric, Synergy Effect of Sodium Acetate and Glycosidically Bound Volatiles on the Release of Volatile Compounds from the Unscented Cut Flower, Food Chem. 57 (2009) 6396–6401.
[63] X. Fang, G. Chen, J. Qiu, J. Xu, J. Wang, F. Zhu, G. Ouyang, Determination of four salicylic acids in aloe by in vivo solid phase microextraction coupling with liquid chromatography-photodiode array detection, Talanta 184 (2018) 520–526.
[64] H. Piri-Moghadam, F. Ahmadi, G.A. Gómez-Ríos, E. Boyaci, N. Reyes-Garcés, A. Aghakhani, B. Bojko, J. Pawliszyn, Fast Quantitation of Target Analytes in Small Volumes of Complex Samples by Matrix-Compatible Solid-Phase Microextraction Devices, Angew. Chemie - Int. Ed. 55 (2016) 7510–7514.
[65] S.N. Zhou, G.F. Ouyang, J. Pawliszyn, Comparison of microdialysis with solid-phase microextraction for in vitro and in vivo studies, J. Chromatogr. A 1196 (2008) 46–56.
[66] D. Vuckovic, S. Risticevic, J. Pawliszyn, In Vivo Solid‐Phase Microextraction in Metabolomics: Opportunities for the Direct Investigation of Biological Systems, Angew Chem. Int. Ed. Engl. 50 (2011) 5618–5624.
[67] V. Bessonneau, J. Ings, M. McMaster, R. Smith, L. Bragg, M. Servos, J. Pawliszyn, In vivo microsampling to capture the elusive exposome, Sci. Rep. 7 (2017) 44038.
[68] S. Wang, K.D. Oakes, L.M. Bragg, J. Pawliszyn, G. Dixon, M.R. Servos, Validation and use of in vivo solid phase micro-extraction (SPME) for the detection of emerging contaminants in fish. Chemosphere 85 (2011) 1472–1482.
[69] A. Roszkowska, M. Yu, V. Bessonneau, L. Bragg, M. Servos, J. Pawliszyn, Tissue storage affects lipidome profiling in comparison to in vivo microsampling approach, Sci. Rep. 8 (2018) 6980.
[70] F.M. Musteata, M.L. Musteata, J. Pawliszyn, Fast in vivo microextraction: a new tool for clinical analysis. Clin. Chem. 52 (2006) 708–715.
[71] S.N. Zhou, K.D. Oakes, M.R. Servos, J. Pawliszyn, Application of Solid-Phase Microextraction for In Vivo Laboratory and Field Sampling of Pharmaceuticals in Fish, Environ. Sci. Technol. 42 (2008) 6073–6079.
[72] X. Zhang, K.D. Oakes, S. Cui, L. Bragg, M.R. Servos, J. Pawliszyn, Tissue-Specific In Vivo Bioconcentration of Pharmaceuticals in Rainbow Trout (Oncorhynchus mykiss) Using Space-Resolved Solid-Phase Microextraction, Environ. Sci. Technol. 44 (2010) 3417–3422.
[73] G. Ouyang, W. Zhao, L. Bragg, Z. Qin, M. Alaee, J. Pawliszyn, Time-Weighted Average Water Sampling in Lake Ontario with Solid-Phase Microextraction Passive Samplers, Environ. Sci. Technol. 41 (2007) 4026–4031.
[74] O.P. Togunde, K.D. Oakes, M.R. Servos, J. Pawliszyn, Determination of Pharmaceutical Residues in Fish Bile by Solid-Phase Microextraction Couple with Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS), Environ. Sci. Technol. 46 (2012) 5302–5309.
[75] J. Xu, S. Huang, R. Wu, R. Jiang, F. Zhu, J. Wang, Bioinspired polydopamine sheathed nanofibers for high-efficient in vivo solid-phase microextraction of pharmaceuticals in fish muscle, Anal. Chem. 87 (2015) 3453–3459.
[76] O.P. Togunde, K. Oakes, M. Servos, J. Pawliszyn, Study of kinetic desorption rate constant in fish muscle and agarose gel model using solid phase microextraction coupled with liquid chromatography with tandem mass spectrometry. Anal. Chim. Acta 742 (2011) 2–9.
[77] E. Cudjoe, C. Hamani, E. Hoque, "Solid Phase microextraction: the potential for in vivo monitoring of endogenous small polar molecules in biological systems", ASMS Conference. Denver (2011) pp. 112–116.
[78] B. Bojko, E. Cudjoe, G.A. Gomez-Rios, SPME – Quo vadis? Anal. Chim. Acta 750 (2012) 132–151.
[79] P.Z. Gorynska, K. Chmara, K. Gorynski, D. Paczkowski, M. Harat, B. Bojko, A new strategy for brain tumour metabolomic analysis, Med. Res. J. 3 (2018) 15–22.
[80] D. Garwolińska, W. Hewelt-Belka, J. Namieśnik, A. Kot-Wasik, Rapid Characterization of the Human Breast Milk Lipidome Using a Solid-Phase Microextraction and Liquid Chromatography-Mass Spectrometry-Based Approach, J. Proteome Res. 16 (2017) 3200–3208.
[81] N. Looby, B. Bojko, G.A Gomez-Ríos, M. Tascon, A. Roszkowska, K. Gorynski, J. Pawliszyn, "Comprehensive sampling and sample preparation: analytical techniques for scientists", XXII International Mass Spectrometry Conference, Florence, Italy )2018( pp. 296–312.
[82] A.K. Gottzein, F. Musshoff, B. Madea, Systematic toxicological analysis revealing a rare case of captan ingestion, J. Forensic.Sci. 58 (2013) 1099–1103.
[83] R. Jiang, E. Cudjoe, B. Bojko, T. Abaffy, J. Pawliszyn, A non-invasive method for in vivo skin volatile compounds sampling, Anal. Chim. Acta. 804 (2013) 111–119.
[84] R. Kramer, A. Sauer-Heilborn, T. Welte, C.A. Guzman, M.G. Höfle, W.R. Abraham, A rapid method for breath analysis in cystic fibrosis patients, Eur. J. Clin. Microbiol. Infect. Dis. 34 (2015) 745–751.
[85] C.L. Silva, R. Perestrelo, P. Silva, H. Tomas, J.S. Camara, Volatile metabolomic signature of human breast cancer cell lines, Sci. Rep. 7 (2017) 43969.
[86] F. Mousavi, B. Bojko, J. Pawliszyn, Development of high throughput 96-blade solid phase microextraction-liquid chromatrography-mass spectrometry protocol for metabolomics, Anal. Chim. Acta 892 (2015) 95–104.
[87] P.F. de Lima, M.F. Furlan, F.A. Ribeiro, S.F. Pascholati, F. Augusto, In vivo determination of the volatile metabolites of saprotroph fungi by comprehensive two-dimensional gas chromatography, J. Sep. Sci. 38 (2015) 1924–1932.
[88] F. Du, M.N. Alam, J. Pawliszyn, Aptamer-functionalized solid phase microextraction-liquid chromatography/tandem mass spectrometry for selective enrichment and determination of thrombin, Anal. Chim. Acta. 845 (2014) 45–52.
[89] D. Vuckovic, I. de Lannoy, B. Gien, In vivo solid-phase microextraction for single rodent pharmacokinetics studies of carbamazepine and carbamazepine-10,11-epoxide in mice. J. Chromatogr. A 1218 (2011) 3367–3375.
[90] M. Gallagher, C. Wysocki, J. Leyden, A. Spielman, X. Sun, G. Preti, Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 159 (2008) 780–791.
[91] Z.M. Zhang, J.J. Cai, G.H. Ruan, G.K. Li, The study of fingerprint characteristics of the emanations from human arm skin using the original sampling system by SPME–GC/MS. J. Chromatogr. B 822 (2005) 244–252.
[92] V. Bessonneau, E. Boyaci, M. Maciazek-Jurczyk, J. Pawliszyn, In vivo solid phase microextraction sampling of human saliva for non-invasive and on-site monitoring, Anal. Chim. Acta. 856 (2015) 35–45.
[93] Y. Tang, S. Huang, J. Xu, G. Ouyang, Y. Liu, PLGA-based nanofibers with a biomimetic polynoradrenaline sheath for rapid in vivo sampling of tetrodotoxin and sulfonamides in pufferfish, J. Mater. Chem. B 6 (2018) 3655–3664.
[94] Z. Bai, A. Pilote, P.K. Sarker, G. Vandenberg, J. Pawliszyn, In vivo solid-phase microextraction with in vitro calibration: determination of off-flavor components in live fish, Anal. Chem. 85 )2013( 2328–2332.
[95] N. Reiche, F. Mothes, P. Fiedler, H.A. Borsdorf, solid-phase microextraction method for the in vivo sampling of MTBE in common reed (Phragmites australis), Environ. Monit. Assess. 185 )2013( 7133–7144.