Document Type : Full research article
Author
Department of Chemistry, College of Natural Sciences, Arbaminch UniversityP.O. Box 21, Ethiopia.
Abstract
Physicochemical characterization was carried out for the determination of the quality of drinking tap water from Masha, and Mizan-Aman town southwest Ethiopia. Known volume of tap water samples were digested by Standard Method 3030K microwave digestion system using 5 mL concentrated of HNO3 for 20 minutes at variable temperature (160-170 oC). After digestion with microwave acid digestion, some selected metals (Mg, Ca, Cu, Mn, Fe, Zn, Cd & Pb) were determined by Flame Atomic Absorption Spectrophotometer and the common anions were determined as follows, Ortho phosphorous (PO43-) by APHA4500-PC.Vanadomolybdphosphoric method, Chloride (Cl-) by APHA4500-Cl-B. Argentometric method, Carbonate(CO3-2) by APHA 2330B.Titration method, Nitrate (NO3-) and ammonia (NH3) by WTD photometer method (WAG PHOT-24).The concentration of these metals and common anions obtained in this study were found to be within the range of WHO and other international guideline lines except Cd. Levels of these metals concentration in this study was that, in all water samples, Mg was found in higher concentration followed by Ca, Fe, Mn, Zn, Cu and Cd respectively. Concentration of Pb was below the method detection limit in all water samples. Under this investigation, at p = 0.05, the physicochemical parameters of all water samples which were taken from different sites were significantly different among the distribution points and distribution systems. The concentrations of the selected metals and common anions were significantly different in between the distribution points and distribution systems except Zn in Mizan, Mn, Fe and Cd in Aman, NH3 in Masha, and Aman sites and in respective of the physical parameters, temperature and electrical conductivity of all the water samples were significantly different except in Masha site. pH and total hardness of all water samples were not significantly different in all sites except total hardness in Masha site.
Keywords