[1] W.W. Chen, X. Zhang and W.J. Huang, Role of neuroinflammation in neurodegenerative diseases, Mol. Med. Rep. 13 (2016) 3391-3396.
[2] B. Thrash-Williams, S.S. Karuppagounder, D. Bhattacharya, M. Ahuja, V. Suppiramaniam and M. Dhanasekaran, Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid, Life Sci. 154 (2016) 24-29.
[3] E.D. AlFadly, P.A. Elzahhar, A. Tramarin, S. Elkazaz, H. Shaltout, M.M. Abu-Serie, J. Janockova, O. Soukup, D.A. Ghareeb, A.F. El-Yazbi, R.W. Rafeh, N.-M.Z. Bakkar, F. Kobeissy, I. Iriepa, I. Moraleda, M.N.S. Saudi, M. Bartolini and A.S.F. Belal, Tackling neuroinflammation and cholinergic deficit in Alzheimer's disease: Multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase, Eur. J. Med. Chem. 167 (2019) 161-186.
[4] L.J. Quintans-Junior, D.A. Silva, J.S. Siqueira, A.A.S. Araujo, R.S.S. Barreto, L.R. Bonjardim, J.M. DeSantana, W. De Lucca Junior, M.F.V. Souza, S.J.C. Gutierrez, J.M. Barbosa-Filho, V.J. Santana-Filho, D.A.M. Araujo and R.N. Almeida, Bioassay-guided evaluation of antinociceptive effect of N-salicyloyltryptamine: a behavioral and electrophysiological approach, J. Biomed. Biotechnol. 5 (2010) 1-6.
[5] X. Fan, J. Li, X. Deng, Y. Lu, Y. Feng, S. Ma, H. Wen, Q. Zhao, W. Tan, T. Shi and Z. Wang, Design, synthesis and bioactivity study of N-salicyloyl tryptamine derivatives as multifunctional agents for the treatment of neuroinflammation, Eur. J. Med. Chem. 193 (2020) 112217-112225.
[6] D. Baichuan, H. Long, T. Tang, X. Ni, J. Chen, G. Yang, F. Zhang, et al., Quantitative Structure-Activity Relationship Study of Antioxidant Tripeptides Based on Model Population Analysis, Inter. J. Mol. Sci. 20 (2019): 995-1009.
[7] C. Samir, M. Ghamali, M. Larif, R. Hmamouchi, M. Bouachrine and T.R. Lakhlifi, Quantitative Structure–Activity Relationship Studies of Anticancer Activity for Isatin (1H-Indole-2, 3-Dione) Derivatives Based on Density Functional Theory, Inter. J. QSAR 2 (2017) 90– 115.
[8] Y. Wong Kai, G. Andrew, L.M. Mercader, B.H. Saavedra, P. Gustavo and P.R. Romanelli, QSAR Analysis of tacrine-related acetylcholinesterase inhibitors, J. Biomed. Sci. 21 (2014) 84-94.
[9] V. Suryanarayanan, S. Kumar Singh, S. Kumar Tripathi, C. Selvaraj, K. Konda Reddy and A. Karthiga , A three-dimensional chemical phase pharmacophore mapping, QSAR modelling and electronic feature analysis of benzofuran salicylic acid derivatives as LYP inhibitors, SAR QSAR Environ. Res. 23 (2013) 1024-1040.
[10] X. Li, N. Li, Z. Sui, K. Bi, Z. Li, An investigation on the Quantitative Structure-Activity Relationships of the Anti-Inflammatory Activity of Diterpenoid Alkaloids, Molecules 22 (2017) 363-377.
[11] Robert G. Parr and Yang Weitao. Density-functional Theory of Atoms and Molecules, Oxford University Press (1994).
[12] M.J. Frisch, et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
[13] V. Ravichandran Rajak, H. Jain, A. Sivadasan, S. Varghese, C.P. R Kishore-Agrawal, Validation of QSAR models – strategies and importance, Int. J. Drug Des. Disc. 2 (2011) 511–519.
[14] Accelrys Inc. MS modeling. San Diego, CA: Accelrys Inc. 2003.
[15] K.A. Lippa, L.C. Sander, R.D. Mountain, Molecular dynamics simulations of alkylsilane stationary-phase order and disorder. 2. Effects of temperature and chain length, Anal. Chem. 24 (2005) 7852-7861.
[16] H. Sun, COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B 102 (1998) 7338-7364.
[17] H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. (1980) 72, 2384-2389.
[18] Y.J. Zhang, J. Na D., H. Zhong, C.P. Sun, J.G. Han, Molecular dynamics exploration of the binding mechanism and properties of single-walled carbon nanotube to WT and mutant VP35 FBP region of Ebola virus, J. Biol. Phys. (2017) 43, 149–165.