[1] E. Brück, A.Elbert, R. Fischer, S. Krueger, J. Kühnhold, A.M. Klueken, R. Nauen, J.F. Niebes, U. Reckman, J.J. Schnorbach, R. Steffens and X. van Waetermeulen, Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: biological profile and field performance, Crop. Prot. 28 (2009) 838–844.
[2] S. Vemuri, C. Rao and S. Swarupa, Dissipation of spirotetramat and imidacloprid in grapes and soil, J. Multi. Eng. Sci. Technol. 1 (2014) 319-324.
[3] S.Wang, Y. Zhang, X.Yang, W. Xie and Q. Wu, Resistance Monitoring for eight Insecticides on the sweetpotato whitefly (Hemiptera: Aleyrodidae) in China, J. Econ. Entomol. 110 (2017) 660-666.
[4] M. Ahmad, M.I. Arif and M. Naveed, Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan, J. Pest. Sci. 83 (2010) 409-420.
[5] Y. Gong, X. Shi, N. Desneux and X. Gao, Effects of spirotetramat treatments on fecundity and carboxylesterase expression of Aphis gossypii Glover, Ecotoxicology 25 (2016) 655-663.
[6] A. Elbert, U. Ebbinghaus-Kintscher, C. Erdelen, R. Nauen and H. Schnorbach, The biological profile of thiacloprid-a new chloronicotinyl insecticide, Pflanzen-Nachrich Bayer 54 (2001)185-208.
[7] R. Nauen, U. Reckmann, J. Thomzik and W. Thielert, Biological profile of spirotetramat (Movento®)–a new two-way systemic (ambimobile) insecticide against sucking pest species, Bayer Crop. Sci. J. 61 (2008) 245-278.
[8] B. Singh, K. Mandal, S.K. Sahoo, U. Bhardwaj and R.S. Battu, Development and validation of an HPLC method for determination of spirotetramat and spirotetramat cis enol in various vegetables and soil, J. AOAC Inter. 96 (2013) 670-675.
[9] J. Liu, J.A. Jonsson and G. Jiang, Application of ionic liquids in analytical chemistry, TrAC- Trends Anal. Chem. 24 (2005) 20-27.
[10] R. Sheldon, Catalytic reactions in ionic liquids, Chem. Commun. 23 (2001) 2399-2407.
[11] P. Bonhote, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel, Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem. 35 (1996) 1168-78.
[12] P. Wasserscheid and W. Keim, Ionic liquids—new “solutions” for transition metal catalysis,
Angew. Chem. Int. Edit. 39 (2000) 3772-3789.
[13] J.S. Wilkes, J.A. Levisky, R.A. Wilson and C.L. Hussey, Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis, Inorg. Chem. 21 (1982) 1263-1264.
[14] A.E. Visser, R.P. Swatloski, W.M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J.H. Davis and R.D. Rogers, Task-specific ionic liquids for the extraction of metal ions from aqueous solutions, Chem. Commun. 1 (2001) 135-136.
[15] P.Y. Chen and I.W. Sun, Electrochemical study of copper in a basic 1-ethyl-3-methylimidazolium tetrafluoroborate room temperature molten salt, Electrochim. Acta 45(3) (1999) 441-450.
[16] L. Barrosse‐Antle, A. Bond, R. Compton, A. O'Mahony, E. Rogers and D. Silvester, Voltammetry in room temperature ionic liquids: comparisons and contrasts with conventional electrochemical solvents, Asian J. Chem. 5 (2010) 202-30.
[17] S. Carda–Broch, A. Berthod and D. Armstrong, Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid, Anal. Bioanal. Chem. 375 (2003) 191-199.
[18] T. Welton, Room-temperature ionic liquids: Solvents for synthesis and catalysis, Chem. Rev. 99(8) (1999) 2071-2084.
[19] L. He, X. Luo, X. Jiang and L. Qu, A new 1, 3-dibutylimidazolium hexafluorophosphate ionic liquid-based dispersive liquid–liquid microextraction to determine organophosphorus pesticides in water and fruit samples by high-performance liquid chromatography, J. Chromatogr. A 1217 (2010) 5013-5020.
[20] S. Li, S. Cai, W. Hu, H. Chen and H. Liu, Ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples, Spectrochim. Acta B 64 (2009) 666-671.
[21] M. Rezaee, Y. Assadi, M.R.M. Hosseini, E. Aghaee, F. Ahmadi and S. Berijani, Determination of organic compounds in water using dispersive liquid–liquid microextraction, J. Chromatogr. A 1116 (2006) 1-9.
[22] S. Berijani, Y. Assadi, M. Anbia, M.R.M. Hosseini and E. Aghaee, Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection: Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water, J. Chromatogr. A 1123 (2006) 1-9.
[23] R.R. Kozani, Y. Assadi, F. Shemirani, M.R.M. Hosseini and M.R. Jamali, Part-per-trillion determination of chlorobenzenes in water using dispersive liquid–liquid microextraction combined gas chromatography–electron capture detection, Talanta 72 (2007) 387-393.
[24] M. Pastor-Belda, I. Garrido, N. Campillo, P. Vinas, P. Hellín, P. Flores and J. Fenoll, Dispersive liquid–liquid microextraction for the determination of new generation pesticides in soils by liquid chromatography and tandem mass spectrometry, J. Chromatogr. A 1394 (2015) 1-8.
[25] M.T. Pena, M.C. Casais, M.C. Mejuto and R. Cela, Development of an ionic liquid based dispersive liquid-liquid microextraction method for the analysis of polycyclic aromatic hydrocarbons in water samples, J. Chromatogr. A 1216 (2009) 6356-6364.
[26] M. Asensio-Ramos, J. Hernández-Borges, T.M. Borges-Miquel and M.Á. Rodríguez-Delgado, Ionic liquid-dispersive liquid-liquid microextraction for the simultaneous determination of pesticides and metabolites in soils using high-performance liquid chromatography and fluorescence detection, J.Chromatogr. A 1218 (2011) 4808-4816.
[27] M.J. Trujillo-Rodríguez, P. Rocio-Bautista, V. Pino and A.M. Afonso, Ionic liquids in dispersive liquid-liquid microextraction, TrAC- Trend Anal. Chem. 51 (2013) 87-106.
[28] S. Mohapatra, M. Deepa, S. Lekha, B. Nethravathi, B. Radhika and S. Gourishanker, Residue dynamics of spirotetramat and imidacloprid in/on mango and soil, Bull. Environ. Contam. Toxicol. 89 (2012) 862-867.
[29] Y. Zhu, X. Liu, J. Xu, F. Dong, X. Liang, M. Li, L. Duan and Y. Zheng, Simultaneous determination of spirotetramat and its four metabolites in fruits and vegetables using a modified quick, easy, cheap, effective, rugged, and safe method and liquid chromatography/tandem mass spectrometry, J. Chromatogr. A 1299 (2013) 71-77.
[30] E. Watanabe, Y. Kobara and Y. Yogo, Rapid and simple analysis of pesticides persisting on green pepper surfaces swabbing with solvent-moistened cotton, J. Agr. Food Chem. 60 (2012) 9000-9005.
[31] P. Jovanov, V. Guzsvány, M. Franko, S. Lazić, M. Sakač, I. Milovanović and N. Nedeljković, Development of multiresidue DLLME and QuEChERS based LC–MS/MS method for determination of selected neonicotinoid insecticides in honey liqueur, Food Res. Int. 55 (2014) 11-19.
[32] S. Mohapatra, M. Deepa and G. Jagadish, An efficient analytical method for analysis of spirotetramat and its metabolite spirotetramat-enol by HPLC, Bull. Environ. Contam. Toxicol. 88 (2012) 124-128.
[33] M. Faraji, R. Noorbakhsh, H. Shafieyan and M. Ramezani, Determination of acetamiprid, imidacloprid, and spirotetramat and their relevant metabolites in pistachio using modified QuEChERS combined with liquid chromatography-tandem mass spectrometry, Food Chem. 240 (2018) 634-641.
[34] M. Zhiyuan, R. Li, S. Yueyi, X. Zhiying and C. Xiaojun, Simultaneous determination of spirotetramat and its four metabolites in Spinacia oleracea L., soil and water using liquid chromatographytandem mass spectrometry, Chinese J. Pestic. Sci. 19 (2017) 482-490.