[1] A. Baciu, M. Ardelean, A. Pop, R. Pode, and F. Manea, Simultaneous Voltammetric/ Amperometric Determination of Sulfide and Nitrite in Water at BDD Electrode, Sensors (2015) 14526-14538.
[2] F. Liu, Y. Gao, W. Li, J. Shao and Y. Mengو Determination of sodium sulfide based on electrochemiluminescence of rhodamine B at a SWNT modified glassy carbon electrode, RSC Adv (2014) 16893–16898.
[3] N.S. Lawrence, J. Davis and R.G. Compton, Analytical strategies for the detection of sulfide: a review, Talanta (2000) 771–784.
[4] J. Zhang, A.B.P. Lever and W.J. Pietro, Surface copper immobilization by chelation of alizarin complexone and electrodeposition on graphite electrodes, and related hydrogen sulfide electrochemistry; matrix isolation of atomic copper and molecular copper sulfides on a graphite electrode, J. Electroanal. Chem. (1995) 191-200.
[5] D.M. Tsai, A.S. Kumar and J.M. Zen, A highly stable and sensitive chemically modified screen-printed electrode for sulfide analysis, Anal. Chim. Acta (2006) 145–150.
[6] J.L. Chang, G.T. Wei, T. Chen and J. Zen, Highly Stable Polymeric Ionic Liquid Modified Electrode to Immobilize Ferricyanide for Electroanalysis of Sulfide, Electroanalysis (2013) 845–849.
[7] L.L. Paim and N.R. Stradiotto, Electrooxidation of sulfide by cobalt pentacyanonitrosylferrate film on glassy carbon electrode by cyclic voltammetry, Electrochim Acta (2010) 4144–4147.
[8] J.M. Zen, J.L. Chang, P.Y. Chen, R. Ohara and K.C. Pan, Flow injection analysis of sulfide using a cinder/tetracyano nikelate modified screen-printed electrode, Electroanalysis (2005) 739–743.
[9] M.I. Prodromidis, P.G. Veltsistas, M.I. Karayannis, Electrochemical study of chemically modified and screen-printed graphite electrodes with [(SbO)–O–V(CHL)(2)]Hex. Application for the selective determination of sulfide, Anal. Chem. (2000) 3995–4002.
[10] A.B. Florou, M.I. Prodromidis, M.I. Karayannis and S.M. Tzouwara-Karayanni, Electrocatalysis of sulphide with a cellulose acetate film bearing 2,6-dichlorophenolindophenol. Application to sewage using a fully automated flow injection manifold Talanta (2000) 465–472.
[11] G. Roman, A.C. Pappas, D.K. Demertzi and M.I. Prodromidis, Preparation of a 2-(4-fluorophenyl)indole-modified xerogel and its use for the fabrication of screenprinte delectrodes for the electrocatalytic determination of sulfide. Anal Chim Acta (2004) 201–207.
[12] X. Cao, J. Gao, Y. Ye, P. Wang, S. Ding, Y. Ye and H. Sun, Amperometric Determination of Sulfide by Glassy Carbon Electrode Modified with Hemin Functionalized Reduced Graphene Oxide. Electroanalysis (2016) 140–144.
[13] B. Eetek, D. Long Vu, L.C. Ervenka and Y. Dilgin, Flow Injection Amperometric Detection of Sulfide Using a Prussian Blue Modified Glassy Carbon Electrode. Anal. Sci. (2012) 1075-1080.
[14] J. Zhang, A.B.P. Lever and W.J. Pietro, Electrocatalytic activity of a graphite electrode coated with hexadecachloro phthalocyanatoiron(ll) toward sulfide oxidation, and its possible application in electroanalysis. Can. J. Chem. (1995) 1072-1077.
[15] N.S. Lawrence, L. Jiang, T.G.J. Jones and R.G. Compton, Voltammetric Characte rization of a N,N-Diphenyl-p-phenylene diamine-Loaded Screen-Printed Electrode: A Disposable Sensor for Hydrogen Sulfide. Anal. Chem. (2003) 2054-2059.
[16] Y. Dilgin, B. Kızılkaya, B. Ertek, N. Eren and D.G. Dilgin, Amperometric determination of sulfide based on its electrocatalytic oxidation at a pencil graphite electrode modified with quercetin. Talanta (2012) 490– 495.
[17] E.A. Khudaish, Mass and electron-transfer conditions for the electrochemical oxidation of hydrogen sulfide at vanadium pentoxide film modified electrode. Sensor Actuat B-Chem (2008) 223–229.
[18] E.A. Khudaish and A.T. Al-Hinai, The catalytic activity of vanadium pentoxide film modified electrode on the electrochemical oxidation of hydrogen sulfide in alkaline solutions. J. Electroanal. Chem. (2006) 108–114.
[19] J.A. Bennett, J.E. Pander and M.A. Neiswonger, Investigating the viability of electrodeposited vanadium pentoxide as a suitable electrode material for in vivo amperometric hydrogen sulfide detection. J. Electroanal Chem. (2001) 1–7.
[20] X. Cao, H. Xu, S. Ding, Y. Ye, X. Ge and L. Yu, Electrochemical determination of sulfide in fruits using alizarin–reduced graphene oxide nanosheets modified electrode. Food Chem. (2016) 1224–1229.
[21] Y. Dilgin, B. Kizilkaya, B. Ertek, F. Is and D. Giray Dilgin, Electrocatalytic oxidation of sulphide using a pencil graphite electrode modified with hematoxylin. Sensor Actuat B-Chem. (2012) 223–229.
[22] D.L. Vu and L. Cervenka, Determination of Sulfide by Hematoxylin Multiwalled Carbon Nanotubes Modified Carbon Paste Electrode. Electroanalysis (2013) 1967–1973.
[23] Y. Dilgin, S. Canarslan, O. Ayyildiz, B. Ertek and G. Nisli, Flow injection analysis of sulphide based on its photoelectrocatalytic oxidation at poly-methylene blue modified glassy carbon electrode. Electrochim Acta (2012) 173–179.
[24] R. Zhang, X. Wang and K.K. Shiu, Accelerated direct electrochemistry of hemoglobin based on hemoglobin–carbon nanotube (Hb–CNT) assembly. J. Colloid. Interface. Sci. (2007) 517–522.
[25] Y. Liu, Y. Li, Z.Q. Wu and X. Yan, Fabrication and characterization of hexahistidine-tagged protein functionalized multi-walled carbon nanotubes for selective solid-phase extraction of Cu2+ and Ni2+. Talanta (2009) 1464–1471.
[26] L. Li, Y. Huang, Y. Wang and W. Wang, Hemimicelle capped functionalized carbon nanotubes-based nanosized solid-phase extraction of arsenic from environmental water samples. Anal. Chim. Acta (2009) 182–188.
[27] A.
Mohadesi, Z.
Motallebi and A.
Salmanipour, Multiwalled carbon nanotube modified with 1-(2-pyridylazo)-2-naphthol for stripping voltammetric determination of Pb(II).
Analyst (2010) 1686-1690.
[28] A. Mohadesi, H. Beitollahi and M.A.Karimi, Stripping voltammetric determination of Cd(II) based on multiwalled carbon nanotube functionalized with 1-(2-pyridylazo)-2-naphthol. Chin. Chem. Lett. (2011) 1469–1472.
[29] A. Salmanipour and M.A. Taher, An electrochemical sensor for stripping analysis of Pb(II) based on multiwalled carbon nanotube functionalized with 5-Br-PADAP. J. Solid State Electrochem. (2011) 2695-2702.
[30] D.R. Shobha, A. Jeykumari, S. Ramaprabhu and S.S. Narayanan, A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide. Carbon (2007) 1340–1353.
[31] M. Salavati-Niasari and M. Bazarganipour, Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel(II) Schiff-base complex: Synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide. Appl. Surf. Sci. 92008) 2963–2970.
[32] Y.H. Li, C. Xu C, B. Wei, X. Zhang, M. Zheng, D. Wu and P.M. Ajayan, Self-organized ribbons of aligned carbon nanotubes. Chem. Mater. (2002) 483-485.
[33] A. Koty, M. Sharma, B. Khare and A. Srivastava, Spectrophotometric Determination of Penicillamine with 2,6-Dichlorophenolindophenol in Drug Formulations. Asian. J. Chem. (2008) 4239-4248.
[34] A.J Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, New York: Wiley (2001).
[35] A.B. Florou, M.I. Prodromidis, M.I. Karayannis and S.M. Tzouwara-Karayanni, Flow electrochemical determination of ascorbic acid in real samples using a glassy carbon electrode modified with a cellulose acetate film bearing 2,6-dichlorophenol indophenol. Anal. Chim. Acta (2000) 113–121.