In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran

2 Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran

Abstract

A novel Buprenorphine (BPR) sensor is fabricated based on nanocomposite film of benzene-1,3-disulfonate anion doped overoxidized polypyrrole/multiwalled carbon modified glassy carbon electrode. The carbon nanotubes were drop-casted on bare electrode, and then thin layer of benzene-1,3-disulfonate-doped overoxidized polypyrrole formed electrochemically on it. Effect of experimental conditions involving supporting electrolyte pH, carbon nanotubes suspension drop size, and the number of potential cycles in overoxidized polymerization were optimized by monitoring the voltammetry responses of the modified electrode. Then the optimized modified electrode was used for electrochemical sensing of BPR by differential pulse voltammetry, which exhibited a linear growth with high sensitivity in anodic peak currents at the BPR concentration range of 0.06-40 µM, and a detection limit of 28 nM. Finally, the determination of BPR in urine real samples was performed by the new sensor and satisfactory results obtained.

Keywords

[1]         J.M.P.J. Garrido, M.P.M. Marques, A.M.S. Silva, T.R.A. MacEdo, A.M.Oliveira-Brett and F. Borges, Spectroscopic and electrochemical studies of cocaine-opioid interactions, Anal. Bioanal. Chem., 388 (2007) 1799–1808.
[2]         R.E. Johnson, P.J. Fudala and R. Payne, Buprenorphine: Considerations for pain management, J. Pain Symptom Manage., 29 (2005) 297–326.
[3]         B. Holmes and R.C. Heel, Flecainide A review of its pharmacological properties and therapeutic efficacy, Curr. Ther. (Seaforth)., 26 (1985) 17–23.
[4]         W. Huang, D.E. Moody and E.F. McCance-Katz, The in vivo glucuronidation of buprenorphine and norbuprenorphine determined by liquid chromatography-electrospray ionization-tandem mass spectrometry, Ther. Drug Monit., 28 (2006) 245–251.
[5]         S. Pirnay, F. Hervé, S. Bouchonnet, B. Perrin, F.J. Baud and I. Ricordel, Liquid chromatographic-electrospray ionization mass spectrometric quantitative analysis of buprenorphine, norbuprenorphine, nordiazepam and oxazepam in rat plasma, J. Pharm. Biomed. Anal., 41 (2006) 1135–1145.
[6]         J. Mendelson, R.A. Upton, E.T. Everhart, P. Jacob and R.T. Jones, Bioavailability of sublingual buprenorphine, J. Clin. Pharmacol., 37 (1997) 31–37.
[7]         M. Ohtani, H. Kotaki, K. Uchino, Y. Sawada and T. Iga, Pharmacokinetic analysis of enterohepatic circulation of buprenorphine and its active metabolite, norbuprenorphine, in rats, Drug Metab. Dispos., 22 (1994) 2–7.
[8]         I.I. Papoutsis, P.D. Nikolaou, S.A. Athanaselis, C.M. Pistos, C.A. Spiliopoulou and C.P. Maravelias, Development and validation of a highly sensitive GC/MS method for the determination of buprenorphine and nor-buprenorphine in blood, J. Pharm. Biomed. Anal., 54 (2011) 588–591.
[9]         D.E. Moody, J.D. Laycock, A.C. Spanbauer, D.J. Crouch, R.L. Foltz, J.L. Josephs, L. Amass and W.K. Bickel, Determination of buprenorphine in human plasma by gas chromatography- positive ion chemical ionization mass spectrometry and liquid chromatography- tandem mass spectrometry, J. Anal. Toxicol., 21 (1997) 406–414.
[10]       F. Lagrange, F. Pehourcq, M. Baumevieille and B. Begaud, Determination of buprenorphine in plasma by liquid chromatography: Appication to heroin-dependent subjects, J. Pharm. Biomed. Anal., 16 (1998) 1295–1300.
[11]       L. Mercolini, R. Mandrioli, M. Conti, C. Leonardi, G. Gerra, and M.A. Raggi, Simultaneous determination of methadone, buprenorphine and norbuprenorphine in biological fluids for therapeutic drug monitoring purposes, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 847 (2007) 95–102.
[12]       W.J. Liaw, S.T. Ho, J.J. Wang, O.Y.P. Hu and J.H. Li, Determination of morphine by high-performance liquid chromatography with electrochemical detection: Application to human and rabbit pharmacokinetic studies, J. Chromatogr. B Biomed. Appl., 714 (1998) 237–245.
[13]       A. Tracqui, P. Kintz and P. Mangin, HPLC/MS Determination of Buprenorphine and Norbuprenorphine in Biological Fluids and Hair Samples, J. Forensic Sci., 42 (1997) 14077J.
[14]       F. Lopes, J.G. Pacheco, P. Rebelo and C. Delerue-Matos, Molecularly imprinted electrochemical sensor prepared on a screen printed carbon electrode for naloxone detection, Sensors Actuators, B Chem., 243 (2017) 745–752.
[15]       J. Sochor, J. Dobes, O. Krystofova, B. Ruttkay-Nedecky, P. Babula, M. Pohanka, T. Jurikova, O. Zitka, V. Adam, B. Klejdus and R. Kizek, Electrochemistry as a tool for studying antioxidant properties, Int. J. Electrochem. Sci., 8 (2013) 8464–8489.
[16]       M.A. García-Fernández, M.T. Fernández-Abedul and A. Costa-García, Voltammetric study and determination of buprenorphine in pharmaceuticals, J. Pharm. Biomed. Anal., 21 (1999) 809–815.
[17]       A.R. Fakhari, A. Sahragard and H. Ahmar, Development of an Electrochemical Sensor Based on Reduced Graphene Oxide Modified Screen-Printed Carbon Electrode for the Determination of Buprenorphine, Electroanalysis, 26 (2014) 2474–2483.
[18]       M. Behpour, A. Valipour and M. Keshavarz, Determination of buprenorphine by differential pulse voltammetry on carbon paste electrode using SDS as an enhancement factor, Mater. Sci. Eng. C, 42 (2014) 500–505.
[19]       Y.C. Tsai, S.C. Li and S.W. Liao, Electrodeposition of polypyrrole-multiwalled carbon nanotube-glucose oxidase nanobiocomposite film for the detection of glucose, Biosens. Bioelectron., 22 (2006) 495–500.
[20]       X. Dang, H. Hu, S. Wang and S. Hu, Nanomaterials-based electrochemical sensors for nitric oxide, Microchim. Acta, 182 (2014) 455–467.
[21]       I.S. Chronakis, S. Grapenson and A. Jakob, Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties, Polymer (Guildf)., 47 (2006) 1597–1603.
[22]       H. Peng, L. Zhang, C. Soeller and J. Travas-Sejdic, Conducting polymers for electrochemical DNA sensing, Biomaterials, 30 (2009) 2132–2148.
[23]       M. Ates, A review study of (bio)sensor systems based on conducting polymers, Mater. Sci. Eng. C, 33 (2013) 1853–1859.
[24]       R.K. Shervedani, A.Z. Isfahani, R. Khodavisy and A. Hatefi-Mehrjardi, Electrochemical investigation of the anodic corrosion of Pb-Ca-Sn-Li grid alloy in H2SO4 solution, J. Power Sources, 164 (2007) 890–895.
[25]       A. Hassanein, N. Salahuddin, A. Matsuda, G. Kawamura and M. Elfiky, Fabrication of biosensor based on Chitosan-ZnO/Polypyrrole nanocomposite modified carbon paste electrode for electroanalytical application, Mater. Sci. Eng. C, 80 (2017) 494–501.
[26]       Y.S. Gao, J.K. Xu, L.M. Lu, L.P. Wu, K.X. Zhang, T. Nie, X.F. Zhu and Y. Wu, Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine, Biosens. Bioelectron., 62 (2014) 261–267.
[27]       S. Shahrokhian, M. Azimzadeh and P. Hosseini, Modification of a glassy carbon electrode with a bilayer of multiwalled carbon nanotube/benzene disulfonate-doped polypyrrole: Application to sensitive voltammetric determination of olanzapine, RSC Adv., 4 (2014) 40553–40560.
[28]       S. Shahrokhian and M. Ghalkhani, Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine, Electrochim. Acta, 55 (2010) 3621–3627.
[29]       E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem., 101 (1979) 19–28.
[30]       A. Farmany, M. Shamsara and H. Mahdavi, Enhanced electrochemical biosensing of Buprenorphine opioid drug by highly stabilized magnetic nanocrystals, Sensors Actuators, B Chem., 239 (2017) 279–285.