In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran

2 Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

In this paper, a new rapid and sensitive method based on sodium dodecyl sulfate modified Fe3O4@α–Linolenic acid nanocomposite combined with high-performance liquid chromatography-photo diode array detection (HPLC–PDA) has been proposed for the extraction and determination of tramadol (TRA) in water samples. The Fe3O4@α–Linolenic acid NPs were synthesized and then characterized by Fourier transform-infrared spectroscopy (FT−IR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The main factors influencing extraction and desorption efficiency were optimized. Under optimum conditions, the method was successfully applied to the determination of TRA in the environmental samples and good linearity in the range of 0.1–500ng.mL-1(𝑅2> 0.99) obtained. The detection limit (LOD) and relative standard deviation (RSD) were0.074ng.mL-1 and 2.89 %( n=5) respectively. Finally, the proposed method was successfully applied with the relative recoveries percentages from 94–103.97% for the extraction and determination of tramadol in aqueous samples.

Keywords

[1]     S.R. Abel. Tramadol: An Alternative Analgesic to Traditional Opioids and NSAIDs. J. Pharmaceut. Care Pain Symptom Contr. 3(2010) 5-29.
[2]     W. M. Sweileh. N.Y. Shraim. S.H. Zyoud. S. W. Al-Jabi. Worldwide research productivity on tramadol: a bibliometric analysis. Springer Plus 5 (2016) 1108.
[3]     N.Neskovic, D. Mandic, S.M.Skiljic, G.Kristek, H. Vinkovic, B.Mraovic, Z.Debeljak and S. Kvolik. Different pharmacokinetics of Tramadol, O-Demethyltramadol and N-Demethyltramadol in postoperative surgical patients from those observed in medical patients. Front. Pharmacol. 12 (2021) 656748.
[4]     C.R.Fulton. Y.Zang.Z. Desta. M.B.Rosenman. A.M. Holmes.B.S. Decker. et al. Drug-gene and drug-drug interactions associated with tramadol and codeine therapy in the ingeenious trial. Pharmacogenomics 20 (2019) 397–408.
[5]     S.Grond.A. Sablotzki. Clinical pharmacology of tramadol. Clin. Pharmacokinet. 43 (2004) 879–923.
[6]     S.H. Gan. R. Ismail. Validation of a high-performance liquid chromatography method for tramadol and o-desmethyltramadol in human plasma using solid-phase extraction. J. Chromatogr. B Biomed. Appl759 (2001) 325-335.
[7]     S.H. Gan. R. Ismail. W.W. Adnan and Z. Wan. Method development and validation of a high-performance liquid chromatographic method for tramadol in human plasma using liquid–liquid extraction. J. Chromatogr. B 772 (2002) 123-129.
[8]     H. Ebrahimzadeh. Y. Yamini. A. Sedighi And M.R. Rouini. Determination of tramadol in human plasma and urine samples using liquid phase microextraction with back extraction combined with high performance liquid chromatography. J. Chromatogr. B 863 (2008) 229-234.
[9]      Y. Gu. J.P. Fawcett. Improved HPLC method for the simultaneous determination of tramadol and O-desmethyltramadol in human plasma. J. Chromatogr. B 821 (2005) 240-243.
[10]  Q. Tao. D.J. Stone. M.R. Borenstein. V. Jean-Bart. E.E. Codd. T.P. Coogan and R.B. Raffa. Gas chromatographic method using nitrogen–phosphorus detection for the measurement of tramadol and its O-desmethyl metabolite in plasma and brain tissue of mice and rats. J. Chromatogr. B Biomed. Appl 763 (2001) 165-171.
[11]  Y. Gu. J.P. Fawcett. Improved HPLC method for the simultaneous determination of tramadol and O-desmethyltramadol in human plasma. J. Chromatogr. B 821 (2005) 240-243.
[12] P.S. Cheng. C.H. Lee. C. Liu and C.S. Chien. Simultaneous determination of ketamine, tramadol, methadone, and their metabolites in urine by gas chromatography-mass spectrometry. J. Anal. Toxicol. 32 (2008) 253-259.
[13] L. Chytil. M. Štícha. O. Matoušková. F Perlík and O. Slanař. Enatiomeric determination of tramadol and O-desmethyltramadol in human urine by gas chromatography–mass spectrometry. J. Chromatogr. B 877 (2009) 1937-1942.
[14] Y.F. Sha. S. Shen and G.L. Duan. Rapid determination of tramadol in human plasma by headspace solid-phase microextraction and capillary gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 37 (2005) 143-147.
[15] T. Zhu. L. Ding. X. Guo. L. Yang and A. Wen. Simultaneous determination of tramadol and acetaminophen in human plasma by LC–ESI–MS. Chromatographia 66 (2007) 171-178.
[16] E.C.Y. Chan and P.C. Ho. Enantiomeric separation of tramadol hydrochloride and its metabolites by cyclodextrin-mediated capillary zone electrophoresis. J. Chromatogr. B Biomed. Appl. 707 (1998) 287-294.
[17] M. Valle. J.M. Pavon. R. Calvo. M.A. Campanero and I.F. Troconiz. Simultaneous determination of tramadol and its major active metabolite O-demethyltramadol by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B Biomed. Appl. 724 (1999) 83-89.
[18] P. Norouzi. R. Dinarvand. M. Reza Ganjali and A. Sadat Emami Meibodi. Application of Adsorptive Stripping Voltammetry for the Nano‐Level Detection of Tramadol in Biological Fluids and Tablets Using Fast Fourier Transform Continuous Cyclic Voltammetry at an Au Microelectrode in a Flowing System. Anal. Lett. 40 (2007) 2252-2270.
[19] F. Ghorbani-Bidkorbeh. S. Shahrokhian. A. Mohammadi and R. Dinarvand. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode. Electrochim. Acta. 55 (2010) 2752-2759.
[20] A.A.Y El-Sayed. K.M. Mohamed. M.A. Hilal. S.A. Mohamed. K.E. Aboul-Hagag and  A.Y. Nasser. Development and validation of high-performance liquid chromatography-diode array detector method for the determination of tramadol in human saliva. J Chromatograph Separat Techniq 114 (2011).
[21] M. Javanbakht. A.M. Attaran. M.H. Namjumanesh. M. Esfandyari-Manesh and B. Akbari-Adergani. Solid-phase extraction of tramadol from plasma and urine samples using a novel water-compatible molecularly imprinted polymer. J. Chromatogr. B 878 (2010) 1700-1706.
[22] Z. Lin. W. Cheng. Y. Li. Z. Liu. X. Chen and C. Huang. A novel superparamagnetic surface molecularly imprinted nanoparticle adopting dummy template: An efficient solid-phase extraction adsorbent for bisphenol A. Anal. Chim. Acta 720 (2012) 71-76.
[23] Z. Es’haghi and E. Esmaeili-Shahri. Sol–gel-derived magnetic SiO2/TiO2 nanocomposite reinforced hollow fiber-solid phase microextraction for enrichment of non-steroidal anti-inflammatory drugs from human hair prior to high performance liquid chromatography. J. Chromatogr. B 973 (2014) 142-151.
[24]  A.A. Asgharinezhad. N. Mollazadeh. H. Ebrahimzadeh F. Mirbabaei and N. Shekari. Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for coextraction of acidic and basic drugs from biological fluids and waste water. J. Chromatogr. A 1338 (2014) 1-8.
[25]  M. Faraji. Y. Yamini and M. Rezaee M. Extraction of trace amounts of mercury with sodium dodecyle sulphate-coated magnetite nanoparticles and its determination by flow injection inductively coupled plasma-optical emission spectrometry. Talanta 81 (2010) 831-836.
[26]  A.A. Atia. A.M. Donia and W.A. Al-Amrani. Adsorption/desorption behavior of acid orange 10 on magnetic silica modified with amine groups. Chem. Eng. J. 150 (2009) 55-62.
[27] J.L. Gong. B. Wang. G.M. Zeng. C.P. Yang. C.G. Niu. Q.Y. Niu and Y. Liang. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater. 164 (2009) 1517-1522.
[28]  M. Amelio. Chemical-physical characteristics of olive oils, ONAOO-2003, (2003) 2-5.
[29] E. Tripoli. M. Giammanco. G. Tabacchi. D. Di Majo. S. Giammanco and M. La Guardia. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 18 (2005) 98-112.
[30] G.M. Ebaid. F.R. Seiva. K.K. Rocha. G.A. Souza and E.L. Novelli. Effects of olive oil and its minor phenolic constituents on obesity-induced cardiac metabolic changes. Nutr. J. 9 (2010) 1-9.
[31] K.L. Palanisamy, V. Devabharathi, N.M. Sundaram, The utility of magnetic iron oxide nanoparticles stabilized by carrier oils in removal of heavy metals from waste water. Int. J. Res. Appl. 1 (4) (2013) 15-22.
[32] F. C. Nalle, R. Wahid, I. O. Wulandari, A. Sabarudin. Synthesis and Characterization of Magnetic Fe3O4 Nanoparticles Using Oleic Acid as Stabilizing Agent. Rasayan J. Chem. 12 (2019) 14-21.
[33] B. Zargar. H. Parham. A. Hatamie. Modified iron oxide nanoparticles as solid phase extractor for spectrophotometeric determination and separation of basic fuchsin. Talanta 77 (2009) 1328-1331.
[34] L. Sun. C. Zhang. L.  Chen. J. Liu. H. Jin. H. Xu and L. Ding. Preparation of alumina-coated magnetite nanoparticle for extraction of trimethoprim from environmental water samples based on mixed hemimicelles solid-phase extraction. Anal. Chim. Acta 638 (2009) 162-168.
[35] M. Faraji. Y. Yamini. A. Saleh. M. Rezaee. M. Ghambarian and R. A. Hassani. nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal. Chim. Acta 659 (2010) 172-177.
[36] F. Xie. X. Lin. X. Wu. Z. Xie. Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry. Talanta 74 (2008) 836-843.
[37]  Y. Cai. Z. Yan. M. Nguyen Van. L. Wang and Q. Cai. Magnetic solid phase extraction and gas chromatography–mass spectrometrical analysis of sixteen polycyclic aromatic hydrocarbons. J. Chromatogr. A 1406 (2015) 40-47.
[38] S.H. Gan and R. Ismail. Validation of a high-performance liquid chromatography method for tramadol and o-desmethyltramadol in human plasma using solid-phase extraction. J. Chromatogr. B Biomed. Appl. 759 (2001) 325-335.
[39] C. Moore. S. Rana and C. Coulter. Determination of meperidine, tramadol and oxycodone in human oral fluid using solid phase extraction and gas chromatography–mass spectrometry. J. Chromatogr. B 850 (2007) 370-375.
[40]  Y.F. Sha. S. Shen and G.L. Duan. Rapid determination of tramadol in human plasma by headspace solid-phase microextraction and capillary gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 37 (2005) 143-147.
[41] T. Madrakian. A. Afkhami. H. Mahmood-Kashani and M. Ahmadi M. Superparamagnetic surface molecularly imprinted nanoparticles for sensitive solid-phase extraction of tramadol from urine samples. Talanta 105 (2013) 255-261.