In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

Department of Chemistry, Payame Noor University, PO Box 19395-4697, Tehran, Iran

Abstract

Herein, the electrooxidation of ascorbic acid and folic acid, as two essential vitamins, on the surface of the carbon ceramic electrode modified by polydopamine and copper (Cu/PDA/CCE) was investigated. Poly dopamine was fabricated by applying electro deposition conditions. Initial electrochemical characteristics were performed to study the behavior of the fabricated electrode for simultaneous detection of two biomolecules. From voltametric studies using the developed electrode, two separated anodic peaks for folic acid and ascorbic acid were found promisingly for concurrent detection of the compounds. Linear calibration diagrams were obtained in the range of 0.5 to 360 μM and 0.83 to 380 μM with detection limits of about 0.031 and 0.057 μM for folic acid and ascorbic acid, respectively. The developed electrode was applied in human urine sample analysis with satisfying results

Keywords

[1]     F.J. Al-Shammary, K.A. Al-Rashood, N. A. A. Mian and M. S. Mian, Analytical profile of folic acid, Anal. profiles drug subst. excip., 19 (1990) 221-259.
[2]     S. Movaghgharnezhad and A. Mirabi, Advanced Nanostructure Amplified Strategy for Voltammetric Determination of Folic Acid, Int. J. Electrochem. Sci, 14(2019) 10956-10965.
[3]     D. Manoj, D. R.Kumar and J. Santhanalakshmi, Impact of CuO nanoleaves on MWCNTs/GCE nanocomposite film modified electrode for the electrochemical oxidation of folic acid, Appl. Nanosci. 2(3) (2012) 223-230.
[4]     R. Z. Stolzenberg-Solomon, S. C. Chang, M. F. Leitzmann, K. A. Johnson, C. Johnson, S. S. Buys and R. G. Ziegler, Folate intake, alcohol use, and postmenopausal breast cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, Am. J. cli. Nutr. 83(4) (2006) 895-904.
[5]     A. A. Al-Warthan, Flow injection chemiluminometric determination of folic acid in pharmaceutical formulations, Anal. Sci. 10(6) (1994) 919-922.
[6]     R. A. Lapa, J. F. Lima, B. F. Reis, J. L. Santos and E. A. Zagatto, Photochemical-fluorimetric determination of folic acid in a multi commutated flow system, Anal. Chim. Acta. 351(1-3), (1997) 223-228.
[7]     M. W. Dong, J. Lepore and T. Tarumoto, Factors affecting the ion-pair chromatography of water-soluble vitamins, J. Chromatogr. A 442 (1988) 81-95.
[8]     R. H. F.  Cheung, P. D. Morrison, D. M. Small and P. J. Marriott, Investigation of folic acid stability in fortified instant noodles by use of capillary electrophoresis and reversed-phase high performance liquid chromatography, J. Chromatogr. A 1213(1) (2008) 93-99.
[9]     R. Amidžić, J. Brborić, O. Čudina and S. Vladimirov, Rp-HPLC determination of vitamins, folic acid and B12 in multivitamin tablets, J. Serb. Chem. Soc. 70 (10) (2005) 1229-1235.
[10] B. C. Nelson, K. E. Sharpless and L. C. Sander, Quantitative determination of folic acid in multivitamin/multielement tablets using liquid chromatography/tandem mass spectrometry, J. Chromatogr. A 1135(2) (2006) 203-211.
[11] M. Mazloum-Ardakani, M. A. Sheikh-Mohseni and M. Abdollahi-Alibeik, Fabrication of an electrochemical sensor based on nanostructured polyaniline doped with tungstophosphoric acid for simultaneous determination of low concentrations of norepinephrine, acetaminophen and folic acid, J. Mol. Liq. 178(2013) 63-69.
[12] A. A. Ensafi and H. Karimi-Maleh, modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator, J. Electroanal. Chem. 640(1-2) (2010) 75-83.
[13] R. Ojani, J. B. Raoof and S. Zamani, Electrocatalytic Oxidation of Folic Acid on Carbon Paste Electrode Modified by Nickel Ions Dispersed into Poly (o‐anisidine) Film, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21(24), (2009) 2634-2639.
[14] W.H. Sebrell and S. Harris (Eds.), The Vitamins, vol. 1, second ed., Academic Press, New York, 1967.
[15] O. Arrigoni and M. C. D. Tullio, Ascorbic acid much more than just an antioxidant, Biochim. Biophys. Acta-Gen. Subj. 1569 (2002) 1–9.
[16] A. Tai, J. Takebayashi, A. Ueno, E. Gohda and I. Yamamoto, An isocratic HPLC method for the simultaneous determination of novel stable lipophilic ascorbic acid derivatives and their metabolite, J. Chromatogr. B 840 (2006) 38–43.
[17] A. Tai and E. Gohda, Determination of ascorbic acid and its related compounds in foods and beverages by hydrophilic interaction liquid chromatography, J. Chromatogr. B 853(2007) 214–220.
[18] P. O. Barrales, M. L. F.D. Cordova and A. M. Diaz, Indirect determination of ascorbic acid by solid-phase spectrophotometry, Anal. Chim. Acta 360 (1998) 143–152.
[19] B. Habibi and M. H. Pournaghi-Azar, Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry, Electrochim. Acta 55(19) (2010) 5492-5498.
[20] B. B.  Prasad, D. Jauhari and M. P. Tiwari, A dual-template imprinted polymer-modified carbon ceramic electrode for ultra-trace simultaneous analysis of ascorbic acid and dopamine, Biosens. Bioelectron. 50 (2013) 19-27.
[21] T.  Rohani, and M. A. Taher, A new method for electrocatalytic oxidation of ascorbic acid at the Cu (II) zeolite-modified electrode, Talanta, 78(3) (2009) 743-747.
[22] N. Chauhan, J. Narang and C. S. Pundir, Fabrication of multiwalled carbon nanotubes/polyaniline modified Au electrode for ascorbic acid determination, Analyst, 136(9) (2011) 1938-1945.
[23] R. Zhang, S. Liu, L. Wang and G. Yang, Electroanalysis of ascorbic acid using poly (bromocresol purple) film modified glassy carbon electrode, Measurement, 46(3) (2013) 1089-1093.
[24] M. Tsionsky, G. Gun, V. Glezer and O. Lev, Sol-gel-derived ceramic-carbon composite electrodes: introduction and scope of applications, Anal. Chem. 66 (1994) 1747–1753.
[25] T.  Rohani, S. Z. Mohammadi, M. A. Karimi and S. Amini, Green synthesized silver nanoparticles@ zeolite type A hybridized with carbon ceramic, AgZA-CCE, as a new nano-electrocatalyst for detection of ultra-trace amounts of rutin, Chem. Phys. Lett. 713(2018) 259-265.
[26] M. R. Majidi, K. Asadpour‐Zeynali and S. Gholizadeh, Nanobiocomposite Modified Carbon‐Ceramic Electrode Based on Nano‐TiO2‐Plant Tissue and Its Application for Electrocatalytic Oxidation of Dopamine, Electroanalysis, 22(15) (2010) 1772-1780.
[27] S. Jafari, N. Nasirizadeh and M. Dehghani, developing a highly sensitive electrochemical sensor using thiourea-imprinted polymers based on an MWCNT modified carbon ceramic electrode, J. Electroanal. Chem. 802(2017) 139-146.
[28] T. Skeika, C. R. Zuconelli, S. T. Fujiwara and C. A. Pessoa, Preparation and electrochemical characterization of a carbon ceramic electrode modified with ferrocene carboxylic acid, Sensors, 11(2) (2011) 1361-1374.