[1] W.F. Bansode. K.R. Singh. and P. Shukla. Chloramphenicol Toxicity: A Review. J. Med. Med. Sci. 2 (13) (2011) 1313-1316.
[2] A.Y. Adel. CHLORAMPHENICOL: Relation of Structure to Activity and Toxicity. Ann. Rev. Pharmacol. Toxicol. 128 (1998) 83-100.
[3] C.M. Roberts. Antibiotic toxicity, interactions and resistance development. Periodontology 2000. 28 (2002) 280–297.
[4] S. Goel. Antibiotics in the Environment: A Review. ACS Symposium Series Emerging Micro-Pollutants in the Environment: Occurrence, Fate and Distribution. (2015) 19–42.
[5] P.A. Guy. D. Royer. P. Mottier. E. Gremaud. A. Perisset. and R.H. Stadler. Quantitative determination of chloramphenicol in milk powders by isotope dilution liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A. 1054 (2004) 365–371.
[6] L.K. Sørensen. T.H. Elbæk. and H. Hansen. Determination of Chloramphenicol in Bovine Milk by Liquid Chromatography/Tandem Mass Spectrometry. J. AOAC Int. 86 (2003) 703–706.
[7] X. Wu. X. Tian. L. Xu. J. Li. X. Li. and Y. Wang. Determination of Aflatoxin M1 and Chloramphenicol in Milk Based on Background Fluorescence Quenching Immunochromatographic Assay. Biomed Res. Int. (2017) 1–7.
[8] S.-I. Kawano. H.-Y. Hao. Y. Hashi. and J.-M. Lin. Analysis of chloramphenicol in honey by on-line pretreatment liquid chromatography–tandem mass spectrometry. Chin. Chem. Lett. 26 (2015) 36–38.
[9] F. Barreto. C. Ribeiro. R.B. Hoff. and T.D. Costa. Determination and confirmation of chloramphenicol in honey, fish and prawns by liquid chromatography–tandem mass spectrometry with minimum sample preparation: validation according to 2002/657/EC Directive. Food Addit Contama A. 29 (2012) 550–558.
[10] A. Aresta. D. Bianchi. C. Calvano. and C. Zambonin. Solid phase microextraction—Liquid chromatography (SPME-LC) determination of chloramphenicol in urine and environmental water samples. J. Pharm. Biomed. Anal. 53 (2010) 440–444.
[11] A. Gantverg. I. Shishani. and M. Hoffman. Determination of chloramphenicol in animal tissues and urine. Analytica Chimica Acta. 483 (2003) 125–135.
[12] M. Rejtharová. and L. Rejthar. Determination of chloramphenicol in urine, feed water, milk and honey samples using molecular imprinted polymer clean-up. J. Chromatogr. A. 1216 (2009) 8246–8253.
[13] T.A. Hamoudi. and W.A. Bashir. Spectrophotometric Determination of Chloramphenicol in Pharmaceutical Preparations. J. Educ. Sci. 27 (2018) 19–35.
[14] Y. Xie. Q. Hu. M. Zhao. Y. Cheng. Y. Guo. H. Qian. and W. Yao. Simultaneous Determination of Erythromycin, Tetracycline, and Chloramphenicol Residue in Raw Milk by Molecularly Imprinted Polymer Mixed with Solid-Phase Extraction. Food Anal. Methods.11 (2017) 374–381.
[15] B.W. Blais. A. Cunningham. and H. Yamazaki. Novel immunofluorescence capillary electrophoresis assay system for the determination of chloramphenicol in milk. Food Agric. Immunol. 6 (1994) 409–417.
[16] H. Tsai. H.C. Hu. C.C. Hsieh. Y.H. Lu. C.H. Chen. and C.B. Fuh. Fluorescence studies of the interaction between chloramphenicol and nitrogen‐doped graphene quantum dots and determination of chloramphenicol in chicken feed. J. Chin. Chem. Soc. 67 (2019) 152–159.
[17] X.-D. Pan. P.-G. Wu. W. Jiang. and B.-J. Ma. Determination of chloramphenicol, thiamphenicol, and florfenicol in fish muscle by matrix solid-phase dispersion extraction (MSPD) and ultra-high pressure liquid chromatography tandem mass spectrometry. Food Control. 52 (2015) 34–38.
[18] E. Alechaga. E. Moyano. and M.T. Galceran. Ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of phenicol drugs and florfenicol-amine in foods. Analyst. 137 (2012) 2486.
[19] A. Forti. G. Campana. A. Simonella. M. Multari. and G. Scortichini. Determination of chloramphenicol in honey by liquid chromatography–tandem mass spectrometry. Analytica Chimica. Acta. 529 (2005) 257–263.
[20] M. Ashton. HPLC Determination of Chloramphenicol, Chloramphenicol Monosuccinate and Chloramphenicol Glucuronide in Biological Matrices. J. Liq. Chromatogr. 12 (1989) 1719–1732.
[21] H.-Y. Shen. and H.-L. Jiang. Screening, determination and confirmation of chloramphenicol in seafood, meat and honey using ELISA, HPLC–UVD, GC–ECD, GC–MS–EI–SIM and GCMS–NCI–SIM methods. Analytica Chimica Acta. 535 (2005) 33–41.
[22] T. Menanteau. E. Levillain. and T. Breton. Electrografting via Diazonium Chemistry: From Multilayer to Monolayer Using Radical Scavenger. Chem. Mater. 25 (2013) 2905–2909.
[23] C.A. Richard. N.B. Philip. L. Jacek. Electrochemistry of Carbon Electrodes. Adv. Electrochem. Sci. Eng. (2015) 19-35.
[24] H. Beitollahi. S.Z. Mohammadi. M. Safaei. and S. Tajik. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: a review. Anal. Methods. 12 (2020) 1547–1560.
[25] H.M. Mohamed. Screen-printed disposable electrodes: Pharmaceutical applications and recent developments. Trends Analyt Chem. 82 (2016) 1–11.
[26] A. Ambrosi. R. Antiochia. L. Campanella. R. Dragone. and I. Lavagnini. Electrochemical determination of pharmaceuticals in spiked water samples. J. Hazard. Mater. 122 (2005) 219–225.
[27] T. Gan. J. Li. H. Li. Y. Liu. and Z. Xu. Synthesis of Au nanorod-embedded and graphene oxide-wrapped microporous ZIF-8 with high electrocatalytic activity for the sensing of pesticides. Nanoscale. 11 (2019) 7839–7849.
[28] M.M. Athar. and M. Zaib. Electrochemical Evaluation of Phanerocheaete Chrysosporium Based Carbon Paste Electrode with Potassium Ferricyanide Redox System. Int. J. Electrochem. Sci. 10 (2015) 6690 – 6702.
[29] B.V.M. Zanoni. V.L.I. Rosa. R.C. Pesquero. and R.N. Stradiotto. Electrochemical Behavior of a Nitrobenzenesulfonyl Derivative of Aniline in Aqueous Solution. J. Braz. Chem. Soc. 8 (1997) 223-227.
[30] N. Sebastian. W.-C. Yu. and D. Balram. Electrochemical detection of an antibiotic drug chloramphenicol based on a graphene oxide/hierarchical zinc oxide nanocomposite. Inorg. Chem. Front. 6 (2019) 82–93.
[31] L. Xiao. R. Xu. Q. Yuan. and F. Wang. Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta. 167 (2017) 39–43.
[32] B. Uslu. B.D. Topal. and S.A. Ozkan. Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes. Talanta. 74 (2015) 1191–1200.
[33] Y.-M. Xia. W. Zhang. M.-Y. Li. M. Xia. L.-J. Zou. and W.-W. Gao. Effective Electrochemical Determination of Chloramphenicol and Florfenicol Based on Graphene/Copper Phthalocyanine Nanocomposites Modified Glassy Carbon Electrode. J. Electrochem. Soc. 166 (2019) B654-B663.
[34] K. Kor. and K. Zarei. Electrochemical determination of chloramphenicol on glassy carbon electrode modified with multi-walled carbon nanotube–cetyltrimethylammonium bromide–poly(diphenylamine). J. Electroanal. Chem. 733 (2014) 39–46.
[35] Y. Yuan. X. Xu. J. Xia. F. Zhang. Z. Wang. and Q. Liu. A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol. Microchimica Acta. 186 (2019) 1-8.
[36] T. Sun. H. Pan. Y. Mei. P. Zhang. D. Zeng. X. Liu. S. Rong. and D. Chang. Electrochemical sensor sensitive detection of chloramphenicol based on ionic-liquid-assisted synthesis of de-layered molybdenum disulfide/graphene oxide nanocomposites. J. Appl. Electrochem. 49 (2018) 261–270.
[37] W. Yi. Z. Li. C. Dong. H.-W. Li. and J. Li. Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide. Microchem. J. 148 (2019) 774–783.