In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of industrial chemistry, Addis Ababa Science and Technology University, Addis Ababa P.O.Box 16417, Ethiopia.

2 Department of applied chemistry, 1001 University Road, Hsinchu, Taiwan 300, ROC

3 Department of chemistry, Addis Ababa University College of Natural and Computational Science, Addis Ababa P.O.Box 1176, Ethiopia.

Abstract

An analytical method that offers fast response with a cheap instrument and simple sample preparation is an ideal technique that is required in scientific analysis. Electrochemical sensing is an analytical method that suits the above criteria to determine various samples using different electrode material. Detection of chloramphenicol in agricultural products and drug samples using cheap electrode materials is highly required due to its wide application in agriculture. In this study a cost-effective activated SPCE was made electrochemically to determine chloramphenicol in eye-drop and pasteurized milk. The activation of the SPCE was straightforward and done by cycling 0.5 M KOH using LSV techniques. Surface imaging, spectroscopy, and electrochemical analyses showed that there is an effective formation of new functional groups during the activation. The activated SPCE gave a higher peak current for Chloramphenicol during the CV and SWV study using PBS pH 6.5 compared to that of the bare one. Utilizing the optimal SWV conditions, a linear calibration curve was obtained in the range of 0.05‒100 µM with quite a small detection limit of 20 nM. In addition to the high sensitivity, stability, and remarkable recovery, the excellent reproducibility makes the activated SPCE applicable in real sample analysis.

Keywords

[1]      W.F. Bansode.  K.R. Singh. and P. Shukla. Chloramphenicol Toxicity: A Review. J. Med. Med. Sci. 2 (13) (2011) 1313-1316.
[2]     A.Y. Adel. CHLORAMPHENICOL:  Relation of Structure to Activity and Toxicity. Ann.  Rev.  Pharmacol.  Toxicol. 128 (1998) 83-100.
[3]     C.M. Roberts. Antibiotic toxicity, interactions and resistance development. Periodontology 2000. 28 (2002) 280–297.
[4]     S. Goel. Antibiotics in the Environment: A Review. ACS Symposium Series Emerging Micro-Pollutants in the Environment: Occurrence, Fate and Distribution. (2015) 19–42.
[5]     P.A. Guy. D. Royer. P. Mottier. E. Gremaud. A. Perisset. and R.H. Stadler. Quantitative determination of chloramphenicol in milk powders by isotope dilution liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A. 1054 (2004) 365–371.
[6]     L.K. Sørensen. T.H. Elbæk. and H. Hansen. Determination of Chloramphenicol in Bovine Milk by Liquid Chromatography/Tandem Mass Spectrometry. J. AOAC Int. 86 (2003) 703–706.
[7]     X. Wu. X. Tian. L. Xu. J. Li. X. Li. and Y. Wang. Determination of Aflatoxin M1 and Chloramphenicol in Milk Based on Background Fluorescence Quenching Immunochromatographic Assay. Biomed Res. Int. (2017) 1–7.
[8]     S.-I. Kawano. H.-Y. Hao. Y. Hashi. and J.-M. Lin. Analysis of chloramphenicol in honey by on-line pretreatment liquid chromatography–tandem mass spectrometry. Chin. Chem. Lett. 26 (2015) 36–38.
[9]     F. Barreto. C. Ribeiro. R.B. Hoff. and T.D. Costa. Determination and confirmation of chloramphenicol in honey, fish and prawns by liquid chromatography–tandem mass spectrometry with minimum sample preparation: validation according to 2002/657/EC Directive. Food Addit Contama A. 29 (2012) 550–558.
[10] A. Aresta. D. Bianchi. C. Calvano. and C. Zambonin. Solid phase microextraction—Liquid chromatography (SPME-LC) determination of chloramphenicol in urine and environmental water samples. J. Pharm. Biomed. Anal. 53 (2010) 440–444.
[11] A. Gantverg. I. Shishani. and M. Hoffman. Determination of chloramphenicol in animal tissues and urine. Analytica Chimica Acta. 483 (2003) 125–135.
[12] M. Rejtharová. and L. Rejthar. Determination of chloramphenicol in urine, feed water, milk and honey samples using molecular imprinted polymer clean-up. J. Chromatogr. A. 1216 (2009) 8246–8253.
[13] T.A. Hamoudi. and W.A. Bashir. Spectrophotometric Determination of Chloramphenicol in Pharmaceutical Preparations. J. Educ. Sci. 27 (2018) 19–35.
[14] Y. Xie. Q. Hu. M. Zhao. Y. Cheng. Y. Guo. H. Qian. and W. Yao. Simultaneous Determination of Erythromycin, Tetracycline, and Chloramphenicol Residue in Raw Milk by Molecularly Imprinted Polymer Mixed with Solid-Phase Extraction. Food Anal. Methods.11 (2017) 374–381.
[15] B.W. Blais. A. Cunningham. and H. Yamazaki. Novel immunofluorescence capillary electrophoresis assay system for the determination of chloramphenicol in milk. Food Agric. Immunol. 6 (1994) 409–417.
[16] H. Tsai. H.C. Hu. C.C. Hsieh. Y.H. Lu. C.H. Chen. and C.B. Fuh. Fluorescence studies of the interaction between chloramphenicol and nitrogen‐doped graphene quantum dots and determination of chloramphenicol in chicken feed. J. Chin. Chem. Soc. 67 (2019) 152–159.
[17] X.-D. Pan. P.-G. Wu. W. Jiang. and B.-J. Ma. Determination of chloramphenicol, thiamphenicol, and florfenicol in fish muscle by matrix solid-phase dispersion extraction (MSPD) and ultra-high pressure liquid chromatography tandem mass spectrometry. Food Control. 52 (2015) 34–38.
[18] E. Alechaga. E. Moyano. and M.T. Galceran. Ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of phenicol drugs and florfenicol-amine in foods. Analyst. 137 (2012) 2486.
[19] A. Forti. G. Campana. A. Simonella. M. Multari. and G. Scortichini. Determination of chloramphenicol in honey by liquid chromatography–tandem mass spectrometry. Analytica Chimica. Acta. 529 (2005) 257–263.
[20] M. Ashton. HPLC Determination of Chloramphenicol, Chloramphenicol Monosuccinate and Chloramphenicol Glucuronide in Biological Matrices. J. Liq. Chromatogr. 12 (1989) 1719–1732.
[21] H.-Y. Shen. and H.-L. Jiang. Screening, determination and confirmation of chloramphenicol in seafood, meat and honey using ELISA, HPLC–UVD, GC–ECD, GC–MS–EI–SIM and GCMS–NCI–SIM methods. Analytica Chimica Acta. 535 (2005) 33–41.
[22] T. Menanteau. E. Levillain. and T. Breton. Electrografting via Diazonium Chemistry: From Multilayer to Monolayer Using Radical Scavenger. Chem. Mater. 25 (2013) 2905–2909.
[23] C.A. Richard. N.B. Philip. L. Jacek. Electrochemistry of Carbon Electrodes. Adv. Electrochem. Sci. Eng. (2015) 19-35.
[24] H. Beitollahi. S.Z. Mohammadi. M. Safaei. and S. Tajik. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: a review. Anal. Methods. 12 (2020) 1547–1560.
[25] H.M. Mohamed. Screen-printed disposable electrodes: Pharmaceutical applications and recent developments. Trends Analyt Chem. 82 (2016) 1–11.
[26] A. Ambrosi. R. Antiochia. L. Campanella. R. Dragone. and I. Lavagnini. Electrochemical determination of pharmaceuticals in spiked water samples. J. Hazard. Mater. 122 (2005) 219–225.
[27] T. Gan. J. Li. H. Li. Y. Liu. and Z. Xu. Synthesis of Au nanorod-embedded and graphene oxide-wrapped microporous ZIF-8 with high electrocatalytic activity for the sensing of pesticides. Nanoscale. 11 (2019) 7839–7849.
[28] M.M. Athar. and M. Zaib. Electrochemical Evaluation of Phanerocheaete Chrysosporium Based Carbon Paste Electrode with Potassium Ferricyanide Redox System. Int. J. Electrochem. Sci. 10 (2015) 6690 – 6702.
[29]  B.V.M. Zanoni. V.L.I. Rosa. R.C. Pesquero. and R.N. Stradiotto. Electrochemical Behavior of a Nitrobenzenesulfonyl Derivative of Aniline in Aqueous Solution. J. Braz. Chem. Soc. 8 (1997) 223-227.
[30] N. Sebastian. W.-C. Yu. and D. Balram. Electrochemical detection of an antibiotic drug chloramphenicol based on a graphene oxide/hierarchical zinc oxide nanocomposite. Inorg. Chem. Front. 6 (2019) 82–93.
[31] L. Xiao. R. Xu. Q. Yuan. and F. Wang. Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta. 167 (2017) 39–43.
[32] B. Uslu. B.D. Topal. and S.A. Ozkan. Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes. Talanta. 74 (2015) 1191–1200.
[33] Y.-M. Xia. W. Zhang. M.-Y. Li. M. Xia. L.-J. Zou. and W.-W. Gao. Effective Electrochemical Determination of Chloramphenicol and Florfenicol Based on Graphene/Copper Phthalocyanine Nanocomposites Modified Glassy Carbon Electrode. J. Electrochem. Soc. 166 (2019) B654-B663.
[34] K. Kor. and K. Zarei. Electrochemical determination of chloramphenicol on glassy carbon electrode modified with multi-walled carbon nanotube–cetyltrimethylammonium bromide–poly(diphenylamine). J. Electroanal. Chem. 733 (2014) 39–46.
[35] Y. Yuan. X. Xu. J. Xia. F. Zhang. Z. Wang. and Q. Liu. A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol. Microchimica Acta. 186 (2019) 1-8.
[36] T. Sun. H. Pan. Y. Mei. P. Zhang. D. Zeng. X. Liu. S. Rong. and D. Chang. Electrochemical sensor sensitive detection of chloramphenicol based on ionic-liquid-assisted synthesis of de-layered molybdenum disulfide/graphene oxide nanocomposites. J. Appl. Electrochem. 49 (2018) 261–270.
[37] W. Yi. Z. Li. C. Dong. H.-W. Li. and J. Li. Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide. Microchem. J. 148 (2019) 774–783.