In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Author

Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran

Abstract

Acridine orange supported on multi-walled carbon nanotube (MWCNT) is used for modification of carbon-paste electrode. The studies show that acridine orange efficaciously immobilized in the matrix of the electrode by applying nafion/MWCNT composite under the ultrasonic condition. The results of voltammetric experiments demonstrate that the prepared electrode has an effective response to DA and AA and a relatively big anodic peak separation (nearly 368 mV) is obtained for these compounds. Good sensitivity and selectivity and very low detection limit (0.03 µM) makes the modified electrode very effective in the manufacture of simple devices for the concurrent detection of dopamine in the presence of ascorbic acid in clinical and pharmaceutical preparations.

Keywords

 
[1]     E. Demir, Ö. Göktug, R. İnam, D. Doyduk, Development and Characterization of Iron (III) Phthalocyanine Modified Carbon Nanotube Paste Electrodes and Application for Determination of Fluometuron Herbicide as an Electrochemical Sensor, J. Electroanal. Chem. 895 (2021) 115389.
[2]     E.R. Santana, E.C. Martins, A. Spinelli, Electrode modified with nitrogen-doped graphene quantum dots supported in chitosan for triclocarban monitoring, Microchem. J. 167 (2021) 106297.
[3]     A. Kumaravel, M. Murugananthan, Electrochemical detection of fenitrothion usingnanosilver/dodecane modified glassy carbon electrode, Sensors Actuators, B Chem. 331 (2021) 129467.
[4]     H. Silah, C. Erkmen, E. Demir, B. Uslu, Modified indium tin oxide electrodes: Electrochemical applications in pharmaceutical, biological, environmental and food analysis, TrAC - Trends Anal. Chem. 141 (2021) 116289.
[5]     W. Boumya, N. Taoufik, M. Achak, N. Barka, Chemically modified carbon-based electrodes for the determination of paracetamol in drugs and biological samples, J. Pharm. Anal. 11 (2021) 138–154.
[6]     S.Nikhil, A. Karthika, P.Suresh, A. Suganthi, M. Rajarajan, A selective and sensitive electrochemical determination of catechol based on reduced graphene oxide decorated β-cyclodextrin nanosheet modified glassy carbon electrode, Adv. Powder Technol. In Press.
[7]     K.G. Manjunatha, B.E.K. Swamy, H.D. Madhuchandra, K.A. Vishnumurthy, Synthesis, characterization and electrochemical studies of titanium oxide nanoparticle modified carbon paste electrode for the determination of paracetamol in presence of adrenaline, Chem. Data Collect. 31 (2021) 100604.
[8]     M. Yang, H. Guo, L. Sun, N. Wu, M. Wang, F. Yang, T. Zhang, J. Zhang, Z. Pan, W. Yang, Simultaneous Electrochemical Detection of Hydroquinone and Catechol Using MWCNT-COOH/CTF-1 Composite Modified Electrode, Colloids Surfaces A Physicochem. Eng. Asp. 625 (2021) 126917.
[9]     M. Haroon, I. Abdulazeez, T.A. Saleh, A.A. Al-Saadi, Electrochemically modulated SERS detection of procaine using FTO electrodes modified with silver-decorated carbon nanosphere, Electrochim. Acta. 387 (2021) 138463.
[10] M. Dib, A. Moutcine, H. Ouchetto, A. Chtaini, A. Hafid, M. Khouili, New efficient modified carbon paste electrode by Fe2O3@Ni/Al-LDH magnetic nanocomposite for the electrochemical detection of mercury, Inorg. Chem. Commun. (2021) 108624.
[11] M.D. Meti, J.C. Abbar, J. Lin, Q. Han, Y. Zheng, Y. Wang, J. Huang, X. Xu, Z. Hu, H. Xu, Nanostructured Au-graphene modified electrode for electrosensing of chlorzoxazone and its biomedical applications, Mater. Chem. Phys. 266 (2021).
[12] G. Boopathy, M. Keerthi, S.-M. Chen, S. Meenakshi, M.J. Umapathy, Molybdenum trioxide embedded graphitic carbon nitride sheets modified electrode for caffeine sensing in green tea and coffee powder, Mater. Chem. Phys. 269 (2021) 124735.
[13] K. Settu, Y.-C. Lai, C.-T. Liao, Carbon nanotube modified laser-induced graphene electrode for hydrogen peroxide sensing, Mater. Lett. 300 (2021) 130106.
[14] S. Vinoth, M. Govindasamy, S.F. Wang, A.A. Alothman, R.A. Alshgari, Surface engineering of roselike lanthanum molybdate electrocatalyst modified screen-printed carbon electrode for robust and highly sensitive sensing of antibiotic drug, Microchem. J. 164 (2021) 106044.
[15] R. Pillai, D. Sharma, C. Sarika, I.C. Lekshmi, Electrochemical detection of 1,2-Benzenediol using NiO nanocrystal modified graphite based PEEK electrodes, Mater. Today Proc. 1 (2021) 1–5.
[16] B. Habibi, A. Pashazadeh, L. Ali Saghatforoush, Zn-mesoporous metal-organic framework incorporated with copper ions modified glassy carbon electrode: Electrocatalytic oxidation and determination of amoxicillin, Microchem. J. 164 (2021) 106011.
[17] P.S. Ganesh, G. Shimoga, S.Y. Kim, S.H. Lee, S. Kaya, R. Salim, Quantum chemical studies and electrochemical investigations of pyrogallol red modified carbon paste electrode fabrication for sensor application, Microchem. J. 167 (2021) 106260.
[18] T.M. Lima, P.I. Soares, L.A. do Nascimento, D.L. Franco, A.C. Pereira, L.F. Ferreira, A novel electrochemical sensor for simultaneous determination of cadmium and lead using graphite electrodes modified with poly(p-coumaric acid), Microchem. J. 168 (2021) 106406.
[19] S. Ren, J. Zeng, Z. Zheng, H. Shi, Perspective and application of modified electrode material technology in electrochemical voltammetric sensors for analysis and detection of illicit drugs, Sensors Actuators A Phys. 329 (2021) 112821.
[20] A.H. Oghli, A. Soleymanpour, Ultrasensitive electrochemical sensor for simultaneous determination of sumatriptan and paroxetine using molecular imprinted polymer/sol-gel/polyoxometalate/rGO modified pencil graphite electrode, Sensors Actuators B Chem. 344 (2021) 130215.
[21] A. Wong, A.M. Santos, R. da Fonseca Alves, F.C. Vicentini, O. Fatibello-Filho, M. Del Pilar Taboada Sotomayor, Simultaneous determination of direct yellow 50, tryptophan, carbendazim, and caffeine in environmental and biological fluid samples using graphite pencil electrode modified with palladium nanoparticles, Talanta. 222 (2021).
[22] C. Núñez, J.J. Triviño, V. Arancibia, A electrochemical biosensor for As(III) detection based on the catalytic activity of Alcaligenes faecalis immobilized on a gold nanoparticle–modified screen–printed carbon electrode, Talanta. 223 (2021) 121702.
[23] S. Tajik, H. Beitollahi, H.W. Jang, M. Shokouhimehr, A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine, Talanta. 232 (2021) 122379.
[24] J.-W. QU, P. SONG, X. GONG, M.-B. RUAN, W.-L. XU, Electroanalysis of Iron in Groundwater by Defective Carbon Black Modified Electrode, Chinese J. Anal. Chem. 49 (2021) e21112–e21117.
[25] H. Li, K. Zhou, J. Cao, Q. Wei, C. Te Lin, S.E. Pei, L. Ma, N. Hu, Y. Guo, Z. Deng, Z. Yu, S. Zeng, W. Yang, L. Meng, A novel modification to boron-doped diamond electrode for enhanced, selective detection of dopamine in human serum, Carbon N. Y. 171 (2021) 16–28.
[26] A. Asif, A. Heiskanen, J. Emnéus, S.S. Keller, Pyrolytic carbon nanograss electrodes for electrochemical detection of dopamine, Electrochim. Acta. 379 (2021) 138122.
[27] H. Amir. N. Ponpandian, C. Viswanathan, A Electrochemical Dopamine Sensor Based On RF Magnetron Sputtered TiO2/SS Thin Film Electrode, Mater. Lett. (2021) 130175.
[28] A. Kushwaha, G. Singh, M. Sharma, Designing of cerium phosphate nanorods decorated reduced graphene oxide nanostructures as modified electrode: An effective mode of dopamine sensing, Microchem. J. 166 (2021) 106224.
[29] M.S. Anantha, S.R. Kiran Kumar, D. Anarghya, K. Venkatesh, M.S. Santosh, K. Yogesh Kumar, H.B. Muralidhara, ZnO@MnO2 nanocomposite modified carbon paste electrode for electrochemical detection of dopamine, Sensors Int. 2 (2021) 100087.
[30] S. Siraj, C.R. McRae, D.K.Y. Wong, Hydrogenating carbon electrodes by n-butylsilane reduction to achieve an antifouling surface for selective dopamine detection, Sensors Actuators, B Chem. 327 (2021) 128881.
[31] X. Xiao, Z. Zhang, F. Nan, Y. Zhao, P. Wang, F. He, Y. Wang, Mesoporous CuCo2O4 rods modified glassy carbon electrode as a novel non-enzymatic amperometric electrochemical sensors with high-sensitive ascorbic acid recognition, J. Alloys Compd. 852 (2021) 157045.
[32] L.V. da Silva, N.D. dos Santos, A.K.A. de Almeida, D.D.E.R. dos Santos, A.C.F. Santos, M.C. França, D.J.P. Lima, P.R. Lima, M.O.F. Goulart, A new electrochemical sensor based on oxidized capsaicin/multi-walled carbon nanotubes/glassy carbon electrode for the quantification of dopamine, epinephrine, and xanthurenic, ascorbic and uric acids, J. Electroanal. Chem. 881 (2021).
[33] K. Chetankumar, B.E. Kumara Swamy, S.C. Sharma, Safranin amplified carbon paste electrode sensor for analysis of paracetamol and epinephrine in presence of folic acid and ascorbic acid, Microchem. J. 160 (2021) 105729.
[34] Q. Wang, X. Xiao, X. Hu, L. Huang, T. Li, M. Yang, Molecularly imprinted electrochemical sensor for ascorbic acid determination based on MXene modified electrode, Mater. Lett. 285 (2021) 129158.
[35] G.K. Jayaprakash, B.E. Kumara Swamy, S. Rajendrachari, S.C. Sharma, R. Flores-Moreno, Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications, J. Mol. Liq. 334 (2021) 116348.
[36] H. Vidya, B.E.K. Swamy, Voltammetric determination of dopamine in the presence of ascorbic acid and uric acid at sodium dodecyl sulphate/reduced graphene oxide modified carbon paste electrode, J. Mol. Liq. 211 (2015) 705–711.
[37] A.A. Rafati, A. Afraz, A. Hajian, P. Assari, Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles, Microchim. Acta. 181 (2014) 1999–2008.
[38] N. Soltani, N. Tavakkoli, N. Ahmadi, F. Davar, Simultaneous determination of acetaminophen, dopamine and ascorbic acid using a PbS nanoparticles Schiff base-modified carbon paste electrode, Comptes Rendus Chim. 18 (2015) 438–448.
[39] H. Vidya, B.E. Kumara Swamy, M. Schell, One step facile synthesis of silver nanoparticles for the simultaneous electrochemical determination of dopamine and ascorbic acid, J. Mol. Liq. 214 (2016) 298–305.
[40] N.F. Atta, A. Galal, Y.M. Ahmed, E.H. El-Ads, Design strategy and preparation of a conductive layered electrochemical sensor for simultaneous determination of ascorbic acid, dobutamine, acetaminophen and amlodipine, Sensors Actuators, B Chem. 297 (2019) 126648.
[41] D.M. Stanković, A. Samphao, B. Dojcinović, K. Kalcher, Rapid electrochemical method for the determination of L-DOPA in extract from the seeds of Mucuna Prurita, Acta Chim. Slov. 63 (2016) 220–226.
[42] K. Ghanbari, N. Hajheidari, ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid, Anal. Biochem. 473 (2015) 53–62.
[43] A.C. Anithaa, N. Lavanya, K. Asokan, C. Sekar, WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid, Electrochim. Acta. 167 (2015) 294–302.