In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Chemistry, Payame Noor University, PO Box: 19395-3697, Tehran, Iran

2 Faculty of Basic Science, Shahid Madani University, Azarbaijan, Iran

Abstract

Silver nanoparticles (Ag NPs)-reduced graphene oxide was prepared through the in situ nucleation of Ag NPs on reduced, modified GO (rMGO). Glycine was used as a green reducing as well as modifier agent for GO to obtain rMGO. Nucleation of Ag NPs on rMGO was carried out at 80 ◦C at aqueous media. UV-Vis, FT-IR, and XRD techniques confirmed the reduction, modification, and synthesis of Ag NPs. Meanwhile, the morphology of rMGO and rMGO-Ag nanocomposite was investigated with SEM and TEM images. The synthesized nanocomposite showed excellent catalytic behavior for the reduction of 4-nitrophenol (4-NP) by NaBH4. The electrocatalytic behavior of Ag NPs on rMGO for electroreduction of H2O2 was investigated by cyclic voltammetry (CV). In the optimum condition, H2O2 was determined with a detection limit of 9.4 µM and sensitivity of 0.52 µAµM-1. In addition, with the investigation of MIC data of nanocomposite, it was distinguished that this compound has excellent antibacterial activity.

Keywords

[1]     E. Abbasi. M. Milani. S. Fekri Aval. M. Kouhi. A. Akbarzadeh. H. Tayefi Nasrabadi. P. Nikasa. S.W. Joo, Y. Hanifehpour and K. Nejati-Koshki. Silver nanoparticles: synthesis methods, bio-applications and properties. Crit. Rev. Microbiol. 42 (2016) 173-180.
[2]     J.M. Baik. S.J. Lee and M. Moskovits. Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires.  Nano. Lett. 9 (2009) 672-676.
[3]     Y. Junejo. A. Baykal. M. Safdar and A. Balouch.  A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye.  Appl. Surf. Sci. 290 (2014) 499-503.
[4]     Y. Wang. L. Chen and P. Liu. Biocompatible Triplex Ag@ SiO2@ mTiO2 Core–Shell Nanoparticles for Simultaneous Fluorescence‐SERS Bimodal Imaging and Drug Delivery.  Chem. Eur. J. 18 (2012) 5935-5943.
[5]     J. García-Barrasa. J.M. López-de-Luzuriaga and M. Monge. Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent. Eur. J. Chem. 9 (2011) 7- . 19.
[6]     H. Erjaee. H. Rajaian and S. Nazifi. Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application.Adv. Nat. Sci.: Nanosci. Nanotechnol.
[7]     Z. Sui. X. Chen. L. Wang. L. Xu. W. Zhuang. Y. Chai and C. Yang, Capping effect of CTAB on positively charged Ag nanoparticles.   Phys. E: Low-Dimens. Syst. Nanostructures. 33 (2006) 308-314.
[8]     C. Singh. M.A. Ali and G. Sumana. Green synthesis of graphene based biomaterial using fenugreek seeds for lipid detection ACS. Sustain. Chem. Eng. 4 (2016) 871-880.
[9]     J.T. Robinson. F.K. Perkins, E.S. Snow. Z. Wei and P.E. Sheehan. Reduced graphene oxide molecular sensors. Nano. Lett. 8 (2008) 3137-3140.
[10] S. Gilje. S. Han, M. Wang. K.L. Wang and  R.B. Kaner. A chemical route to graphene for device applications. Nano. Lett. 7 (2007) 3394-3398.
[11] T.K. Das. P. Bhawal. S. Ganguly, S. Mondal and N.C. Das. A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction.  Surf. Interfaces. 13 (2018) 79-91.
[12] B. Yang. Z. Liu. Z. Guo. W. Zhang. M. Wan. X. Qin and H. Zhong. In situ green synthesis of silver–graphene oxide nanocomposites by using tryptophan as a reducing and stabilizing agent and their application in SERS. Appl. Surf. Sci.316 (2014) 22-27.
[13] S. Fathalipour. S. Pourbeyram. A. Sharafian. A. Tanomand and P. Azam. synthesis of Ag/reduced graphene oxide nanocomposite with excellent electrocatalytic and antibacterial performance. Mater. Sci. Eng. C . 75 (2017) 742-751.
[14] J. Shen. M. Shi. B. Yan. H. Ma. N. Li and M. Ye. One-pot hydrothermal synthesis of Ag-reduced graphene oxide composite with ionic liquid.  J. Mater. Chem. 21 (2011) 7795-7801.
[15] K. Ojha. O. Anjaneyulu and A.K. Ganguli. Graphene-based hybrid materials: synthetic approaches and properties. Curr. Sci. 107 (2014) 397-418.
[16] O. Akhavan. E. Ghaderi. S. Aghayee. Y. Fereydooni and A. Talebi. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J. Mater. Chem. 22 (2012) 13773-13781.
[17] J. Gao. F. Liu. Y. Liu. N. Ma.Z. Wang and X.  Zhang. Environment-friendly method to produce graphene that employs vitamin C and amino acid.       Chem. Mater. 22 (2010) 2213-2218.
[18] Y. Feng. N. Feng and G. Du. A green reduction of graphene oxide via starch-based materials.   RSC Adv.,3 (2013) 21466-21474.
[19] D.R. Dreyer. S. Park. C.W. Bielawski and  R.S. Ruoff, The chemistry of graphene oxide. Chemical society reviews. Chem. Soc. Rev. 39 (2010) 228-240.
[20] S. Bose. T. Kuila. A.K. Mishra. N.H. Kim and J.H. Lee. Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J. Mater. Chem. A . 22 (2012) 9696-9703.
[21] S. Fathalipour and E. Abdi.  Glycine-assisted aqueous suspension of reduced graphene oxide/Ag nanocomposite via in situ reduction at room temperature: synthesis and electroactivity behavior. Synth. Met. 221 (2016) 159-168.
[22] K. Hamaguchi. H. Kawasaki and R. Arakawa. Photochemical synthesis of glycine-stabilized gold nanoparticles and its heavy-metal-induced aggregation behavior. olloids Surf. A Physicochem. Eng. Asp.367 (2010) 167-173.
[23] P. Guo L. Tang J. Tang. G. Zeng, B. Huang. H. Dong. Y. Zhang.Y. Zhou. Y. Deng and L. Ma. Catalytic reduction–adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon.   J. Colloid Interface Sci. 469 (2016) 78-85.
[24] M.I. Din. R. Khalid. Z. Hussain. T. Hussain, A. Mujahid. J. Najeeb and F. Izhar. Nanocatalytic Assemblies for Catalytic Reduction of Nitrophenols: Crit. Rev. Anal. Chem. 50 (2020) 322-338.
[25] M. Singla. A. Negi, V. Mahajan.K. Singh and D. Jain. Catalytic behavior of nickel nanoparticles stabilized by lower alkylammonium bromide in aqueous medium. Appl. Catal. A. 323 (2007) 51-57.
[26] N. Li. P. Zhao and D. Astruc. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed, 53 (2014) 1756-1789.
[27] N. Meng. S. Zhang.Y. Zhou. W. Nie and P. Chen. Novel synthesis of silver/reduced graphene oxide nanocomposite and its high catalytic activity towards hydrogenation of 4-nitrophenol.                 RSC Adv.5 (2015) 70968-70971.
[28] T. Aditya. A. Pal and T. Pal. Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chem. Commun. 51 (2015) 9410-9431.
[29] T. Wu. L. Zhang. J. Gao. Y. Liu.C. Gao and J. Yan. Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol.  J. Mater. Chem. A . 1 (2013) 7384-7390.
[30] D.C. Marcano. D.V. Kosynkin. J.M. Berlin. A. Sinitskii. Z. Sun. A. Slesarev. L.B. Alemany.W. Lu and J.M. Tour. Improved synthesis of graphene oxide.  ACS .nano. 4 (2010) 4806-4814.
[31] A.B. Bourlinos. D. Gournis. D. Petridis. T. Szabó. A. Szeri and I. Dékány. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids.  Langmuir. 19 (2003) 6050-6055.
[32] S. Pourbeyram. M. Soltanpour. S. Fathalipour, Determination of Phosphate in Human Serum with Zirconium/Reduced Graphene Oxide Modified Electrode. 35 (2019)739-743.
[33] S. Fathalipour. B. Ataei and F. Janati. Aqueous suspension of biocompatible reduced graphene oxide-Au NPs composite as an effective recyclable catalyst in a Betti reaction. Mater. Sci. Eng. C .97 (2019) 356-366.
[34] X. Yang. C.B. Ching. X.J. Wang. J. Lu.,  AICHE annual meeting, San Fransisco, CA, 2006.
[35] B. Zahed and H. Hosseini-Monfared. A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect. Appl. Surf. Sci. 328 (2015) 536-547.
[36] A. Kumar and M. Khandelwal. Amino acid mediated functionalization and reduction of graphene oxide–synthesis and the formation mechanism of nitrogen-doped graphene.  New J. Chem.38 (2014) 3457-3467.
[37] S. Yang. C. Nie. H. Liu and H. Liu. Facile synthesis and catalytic application of Ag–Fe2O3–carbons nanocomposites. Mater. Lett. 100 (2013) 296-298.
[38] N. Pradhan. A. Pal and T. Pal. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles.  Langmuir. 17 (2001) 1800-1802.
[39] P. Veerakumar. M. Velayudham. K.-L. Lu and S. Rajagopal. Polyelectrolyte encapsulated gold nanoparticles as efficient active catalyst for reduction of nitro compounds by kinetic method. Appl. Catal. A: Gen. 439 (2012) 197-205.
[40] N.C. Sharma. S.V. Sahi. S. Nath. J.G. Parsons. J.L. Gardea-Torresde and T. Pal. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ.sci. technol. 41 (2007) 5137-5142.
[41] M. Zhang. Y. Zhao. L. Yan. R. Peltier. W. Hui. X. Yao.Y. Cui. X. Chen. H. Sun and Z. Wang. Interfacial engineering of bimetallic Ag/Pt nanoparticles on reduced graphene oxide matrix for enhanced antimicrobial activity. ACS Appl. Mater. Interfaces. 8 (2016) 8834-8840.
[42] V.K. Sharma. R.A. Yngard and Y. Lin. Silver nanoparticles: green synthesis and their antimicrobial activities.  Ad.colloid. interfac. 145 (2009) 83-96.
[43] L. Kvítek. A. Panáček. J. Soukupova. M. Kolář. R. Večeřová. R. Prucek. M. Holecova and R. Zbořil. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C . 112 (2008) 5825-5834.
[44] S. Tang.S. Vongehr and  X. Meng. Carbon spheres with controllable silver nanoparticle doping. J. Phys. Chem. C . 114 (2009) 977-982.
[45] R. Rajesh and  R. Venkatesan. Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly (amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics. J. Mol. Catal. A. Chem. 359 (2012) 88-96.
[46] R. Vadakkekara. M. Chakraborty and P.A. Parikh. Reduction of aromatic nitro compounds on colloidal hollow silver nanospheres. Colloids Surf. A Physicochem. Eng. Asp. 399 (2012) 11-17.
[47] Z. Çıplak. B. Getiren. C. Gökalp. A. Yıldız and N. Yıldız. Green synthesis of reduced graphene oxide-AgAu bimetallic nanocomposite: Catalytic performance.  Chem. Eng. Commun. (2019) 1-15.