In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Chemistry, Payam Noor University, P.O. Box 19395-4697, Tehran, Iran

2 Department of Agriculture, Payam Noor University, P.O. Box 19395-4697, Tehran, Iran

3 Department of Statistics, Payam Noor University, P.O. Box 19395-4697, Tehran, Iran

Abstract

Computational and experimental approach on standard redox potential of dobutamine was developed in aqueous media. A direct and indirect calibrated B3LYP/6-311++G (d, p) method predicted the aqueous phase redox potential of dobutamine as 0.850 V Respectively. The electronic densities of dobutamine calculation at oxidation and reduction state in HOMO and LUMO proved that energies of dobutamine LUMO in oxidation form are lower than dobutamine LUMO in reduction. Therefore, the electron transfer from HOMO to LUMO in dobutamine oxidation form is easier than in dobutamine reduction form. The experimental E° was obtained using cyclic voltammetry at activated glassy carbon electrode as 0.79V versus SHE. The results show that there is a satisfactory agreement between the experimental and computational standard potential value of dobutamine. 

Keywords

[1] H. Vasconcelos, L.C. Coelho, A. Matias, C. Saraiva, P.A. Jorge, J. M. de Almeida. Biosensors for Biogenic Amines: A Review. Biosensors, 11 (2021) 82.
[2] C. Capitain, W. Sebastian, H. Joana, T. Nils, Investigation of C–N formation between catechols and chitosan for the formation of a strong, novel adhesive mimicking mussel adhesion. Waste and Biomass Valorization, 12 (2021) 1761.
[3] M. Heringlake, A. Julian, B. Dominique, B. Stefaan, F. Sonja, G. Massimo, G. Elena, G. Fbio, H. Antoine, T. Wolfgang, T. Luigi, P. Piero, An update on levosimendan in acute cardiac care: applications and recommendations for optimal efficacy and safety. Expert Rev. Cardiovasc. Ther. 19 (2021) 325.
[4] M.J. Jaguszewski, G. Aleksandra. T. Radoslaw, J.F. Krzysztof, S. Lukasz, Efficacy and safety of levosimendan and dobutamine in heart failure: A systematic review and meta-analysis. Cardiol. J. 28(2021)492..
[5] T.V. Astaf’eva, M.V. Arsenyev, R.V. Rumyantcev, G.K. Fukin. V.K. Cherkasov, A.I. Poddel’sky, Imine-Based Catechols and o-Benzoquinones: Synthesis, Structure, and Features of Redox Behavior. ACS omega, 5 (2020) 22179.
[6] B. Sun, D. Feng, M.L.H. Chu, I. Fish, S. Lovera, Z.A. Sands, S. Kelm, A. Valade, M. Wood, T. Ceska, T.S. Kobilka, F. Lebon, B.A. Kobilka, Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nature communications, 12 (2021) 1.
[7] S. Riahi, M.R. Ganjali, H. Khajehsharifi, P. Norouzi, S. Taghipoor. Theoretical and experimental studies on some anticancer derivatives: Electrochemical investigation. Int. J. Electrochem. Sci, 4 (2009)122.
[8] A.R.L. Da Silva, A.J. Dos Santos, C.A. Martinez-Huitle. Electrochemical measurements and theoretical studies for understanding the behavior of catechol, resorcinol and hydroquinone on the boron doped diamond surface. RSC Adv., 8 (2018) 3483.
[9] F. Hasanpour, M. Nekoeinia, A. Semnani, R. Shirazinia. Synthesis of semicarbazide catechol derivative as a potential electrode modifier: application in electrocatalysis of catechol amine drugs. Chem. Pap, 73 (2019) 2081.
[10] Y. Zhang, M. Zhaomin, Electrochemical Behavior of Hydroquinone at Poly (Acridine Orange)–Modified Electrode and Its Separate Detection in the Presence of o‐Hydroquinone and m‐Hydroquinone. Anal. Lett, 39 (2006) 1289.
[11] A. P. Davis, A. J. Fry, Experimental and computed absolute redox potentials of polycyclic aromatic hydrocarbons are highly linearly correlated over a wide range of structures and potentials. J. Phys. Chem A, 114 (2010) 12299.
[12] T. Matsui, S. Jong-Won. A Density Functional Theory-Based Scheme to Compute the Redox Potential of a Transition Metal Complex: Applications to Heme Compound. Molecules, 24 (2019) 819.
[13] M.M. Liu, Sh.M. Han, X.W. Zheng, L.L. Han, T. Liu, Zh.Y. Yu. Experimental and theoretical prediction of the redox potential of dopamine and its supramolecular complex with glycine. Int. J. Electrochem. Sci, 10 (2015) 235.
[14] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects, Chem. Phys. 55 (1981) 117.
[15] M. Namazian, H.R. Zare, M.L. Coote. Determination of the absolute redox potential of Rutin: Experimental and theoretical studies. Biophysical chemistry, 132 (2008) 64.
[16] X. Yan, U. J. Charlotte, F. Diao, K. Qvortrup, D. Tanner, J. Ulstrup, X. Xiao. Surface-confined redox-active monolayers of a multifunctional anthraquinone derivative on nanoporous and single-crystal gold electrodes. Electrochem. commun., 124 (2021) 106962.
[17] F. Hasanpour, M. Nekoeinia, A. Semnani, S. Shojaei. NiMnO3 nanoparticles anchored on graphene quantum dot: Application in sensitive electroanalysis of dobutamine. Microchem. J., 142 (2018) 17.
[18] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2001.
[19] A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution,
IUPAC: Marcel Dekker, Inc., New York, 1985.
[20] S. Shahrokhian, M. Ghalkhani, R. Kohansal, R. Mohammadi, Biomimetic sensor for dobutamine employing nano-TiO2/nafion/carbon nanoparticles modified electrode, Electroanalysis 28 (2016) 970.
[21] S. Palanisamy, S.K. Ramaraj, S.M. Chen, V. Velusamy, T.C.K. Yang, T.W. Chen, Voltammetric determination of catechol based on a glassy carbon electrode modified with a composite consisting of graphene oxide and polymelamine, Microchim. Acta 184 (2017) 1051.
[22] M. Namazian, H.A. Almodarresieh, M.R. Noorbala, H.R. Zare, DFT calculation of electrode potentials for substituted quinones in aqueous solution, Chem. Phys. Lett. 396 (2004) 424
[23] M.D. Liptak, K.G. Gross, P.G. Seybold, S. Feldgus, G.C. Shields, Absolute pKa determinations for substituted phenols, J. Am. Chem. Soc.124 (2002) 6421.
[24] D. Chaparro, J. Alí-Torres. Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes. Journal of molecular modeling, 23 (2017): 1-8.
[25] N.Rega, M.Cossi, V. Barone. Improving performance of polarizable continuum model for study of large molecules in solution. J. Comput. Chem. 20 (1999) 1186.
[26] M. D. Liptak,G. C. Shields. Experimentation with different thermodynamic cycles used for pKa calculations on carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. Iran. Chem. Commun. 85 (2001) 727.
[27] M.M. Liu, S.M.  Han, X.W. Zheng, L. L.  Han, T. Liu, Z.Y. Yu, Experimental and Theoretical Prediction of The Redox Potential of Dopamine and Its Supramolecular Complex With Glycine. Int. J. Electrochem. Sci., 10(2015) 235.
[28] R.SamimiShalamzari, S.Mansouri, A.Eghbali. Determination of the absolute redox potential of methyldopa: experimental and simulation methods. Iran. Chem. Commun, 3 (2015) 348.