[1] H. Vasconcelos, L.C. Coelho, A. Matias, C. Saraiva, P.A. Jorge, J. M. de Almeida. Biosensors for Biogenic Amines: A Review. Biosensors, 11 (2021) 82.
[2] C. Capitain, W. Sebastian, H. Joana, T. Nils, Investigation of C–N formation between catechols and chitosan for the formation of a strong, novel adhesive mimicking mussel adhesion. Waste and Biomass Valorization, 12 (2021) 1761.
[3] M. Heringlake, A. Julian, B. Dominique, B. Stefaan, F. Sonja, G. Massimo, G. Elena, G. Fbio, H. Antoine, T. Wolfgang, T. Luigi, P. Piero, An update on levosimendan in acute cardiac care: applications and recommendations for optimal efficacy and safety. Expert Rev. Cardiovasc. Ther. 19 (2021) 325.
[4] M.J. Jaguszewski, G. Aleksandra. T. Radoslaw, J.F. Krzysztof, S. Lukasz, Efficacy and safety of levosimendan and dobutamine in heart failure: A systematic review and meta-analysis. Cardiol. J. 28(2021)492..
[5] T.V. Astaf’eva, M.V. Arsenyev, R.V. Rumyantcev, G.K. Fukin. V.K. Cherkasov, A.I. Poddel’sky, Imine-Based Catechols and o-Benzoquinones: Synthesis, Structure, and Features of Redox Behavior. ACS omega, 5 (2020) 22179.
[6] B. Sun, D. Feng, M.L.H. Chu, I. Fish, S. Lovera, Z.A. Sands, S. Kelm, A. Valade, M. Wood, T. Ceska, T.S. Kobilka, F. Lebon, B.A. Kobilka, Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nature communications, 12 (2021) 1.
[7] S. Riahi, M.R. Ganjali, H. Khajehsharifi, P. Norouzi, S. Taghipoor. Theoretical and experimental studies on some anticancer derivatives: Electrochemical investigation. Int. J. Electrochem. Sci, 4 (2009)122.
[8] A.R.L. Da Silva, A.J. Dos Santos, C.A. Martinez-Huitle. Electrochemical measurements and theoretical studies for understanding the behavior of catechol, resorcinol and hydroquinone on the boron doped diamond surface. RSC Adv., 8 (2018) 3483.
[9] F. Hasanpour, M. Nekoeinia, A. Semnani, R. Shirazinia. Synthesis of semicarbazide catechol derivative as a potential electrode modifier: application in electrocatalysis of catechol amine drugs. Chem. Pap, 73 (2019) 2081.
[10] Y. Zhang, M. Zhaomin, Electrochemical Behavior of Hydroquinone at Poly (Acridine Orange)–Modified Electrode and Its Separate Detection in the Presence of o‐Hydroquinone and m‐Hydroquinone. Anal. Lett, 39 (2006) 1289.
[11] A. P. Davis, A. J. Fry, Experimental and computed absolute redox potentials of polycyclic aromatic hydrocarbons are highly linearly correlated over a wide range of structures and potentials. J. Phys. Chem A, 114 (2010) 12299.
[12] T. Matsui, S. Jong-Won. A Density Functional Theory-Based Scheme to Compute the Redox Potential of a Transition Metal Complex: Applications to Heme Compound. Molecules, 24 (2019) 819.
[13] M.M. Liu, Sh.M. Han, X.W. Zheng, L.L. Han, T. Liu, Zh.Y. Yu. Experimental and theoretical prediction of the redox potential of dopamine and its supramolecular complex with glycine. Int. J. Electrochem. Sci, 10 (2015) 235.
[14] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects, Chem. Phys. 55 (1981) 117.
[15] M. Namazian, H.R. Zare, M.L. Coote. Determination of the absolute redox potential of Rutin: Experimental and theoretical studies. Biophysical chemistry, 132 (2008) 64.
[16] X. Yan, U. J. Charlotte, F. Diao, K. Qvortrup, D. Tanner, J. Ulstrup, X. Xiao. Surface-confined redox-active monolayers of a multifunctional anthraquinone derivative on nanoporous and single-crystal gold electrodes. Electrochem. commun., 124 (2021) 106962.
[17] F. Hasanpour, M. Nekoeinia, A. Semnani, S. Shojaei. NiMnO3 nanoparticles anchored on graphene quantum dot: Application in sensitive electroanalysis of dobutamine. Microchem. J., 142 (2018) 17.
[18] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2001.
[19] A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution,
IUPAC: Marcel Dekker, Inc., New York, 1985.
[20] S. Shahrokhian, M. Ghalkhani, R. Kohansal, R. Mohammadi, Biomimetic sensor for dobutamine employing nano-TiO2/nafion/carbon nanoparticles modified electrode, Electroanalysis 28 (2016) 970.
[21] S. Palanisamy, S.K. Ramaraj, S.M. Chen, V. Velusamy, T.C.K. Yang, T.W. Chen, Voltammetric determination of catechol based on a glassy carbon electrode modified with a composite consisting of graphene oxide and polymelamine, Microchim. Acta 184 (2017) 1051.
[22] M. Namazian, H.A. Almodarresieh, M.R. Noorbala, H.R. Zare, DFT calculation of electrode potentials for substituted quinones in aqueous solution, Chem. Phys. Lett. 396 (2004) 424
[23] M.D. Liptak, K.G. Gross, P.G. Seybold, S. Feldgus, G.C. Shields, Absolute pKa determinations for substituted phenols, J. Am. Chem. Soc.124 (2002) 6421.
[24] D. Chaparro, J. Alí-Torres. Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes. Journal of molecular modeling, 23 (2017): 1-8.
[25] N.Rega, M.Cossi, V. Barone. Improving performance of polarizable continuum model for study of large molecules in solution. J. Comput. Chem. 20 (1999) 1186.
[26] M. D. Liptak,G. C. Shields. Experimentation with different thermodynamic cycles used for pKa calculations on carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. Iran. Chem. Commun. 85 (2001) 727.
[27] M.M. Liu, S.M. Han, X.W. Zheng, L. L. Han, T. Liu, Z.Y. Yu, Experimental and Theoretical Prediction of The Redox Potential of Dopamine and Its Supramolecular Complex With Glycine. Int. J. Electrochem. Sci., 10(2015) 235.
[28] R.SamimiShalamzari, S.Mansouri, A.Eghbali. Determination of the absolute redox potential of methyldopa: experimental and simulation methods. Iran. Chem. Commun, 3 (2015) 348.