In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

Department of Chemistry, Faculty of Science, Yazd University, 89195-741, Yazd, Iran

Abstract

Recently, different significant efforts have been made to fabricate an effectively modified electrode for replying to the growing requests for enhanced performance electrodes for electrochemical sensors. Herein, we introduced an organic material along with a composite of the zinc sulfide (ZnS) particles distributed in the substrate of carbon nanotubes (CNTs)/reduced graphene oxide (RGO) nanosheets by using an inexpensive, simple, and one-step fabrication method, as an effectively modified electrode for the determination of hydrazine as an analyte. This electrode represents a great electrochemical performance with a large linear range (0.01 μM-60.0 μM) and a proper limit of detection value (0.006 µM) for determination of hydrazine. Good recovery percentage values for the proposed sensor confirm its excellent ability to measure hydrazine.

Keywords

  •  

    • Srinidhi, S. Sudalaimani, K. Giribabu, S. S. Basha and C. Suresh, 2020 Amperometric determination of hydrazine using a CuS-ordered mesoporous carbon electrode, Microchim. Acta 187 (2020) 1.
    • Choudhary and H. Hansen, Human health perspective of environmental exposure to hydrazines: A review, Chemosphere 37 (1998) 801.
    • Vernot, J. MacEwen, R. Bruner, C. Haun, E. Kinkead, D. Prentice, A. Hall III, R. Schmidt, R. Eason R and G. Hubbard, Long-term inhalation toxicity of hydrazine, Fundam. Appl. Toxicol.  5 (1985) 1050.
    • H. Jazayeri, T. Aghaie, A. Avan, A. Vatankhah and M. R. S. Ghaffari, Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion), Sens. Bio Sens. Res. 20 (2018) 1.
    • W. Mo, B. Ogorevc, X. Zhang and B. Pihlar, Cobalt and copper hexacyanoferrate modified carbon fiber microelectrode as an all‐solid potentiometric microsensor for hydrazine, Electroanalysis 12 (2000) 48.
    • Hao, Y. Zhang, K. Ruan, W. Chen, B. Zhou, X. Tan, Y. Wang, L. Zhao, G. Zhang and P. Qu, A naphthalimide-based chemodosimetric probe for ratiometric detection of hydrazine, Sens. Actuator B Chem.  244 (2017) 417.
    • M. Sun, L. Bai and D. Q. Liu, A generic approach for the determination of trace hydrazine in drug substances using in situ derivatization-headspace GC–MS, J. Pharm. Biomed. Anal. 49 (2009) 529.
    • Shaikshavali, T. M. Reddy, T. V. Gopal, G. Venkataprasad, V. S. Kotakadi, V. Palakollu and R. Karpoormath, A simple sonochemical assisted synthesis of nanocomposite (ZnO/MWCNTs) for electrochemical sensing of Epinephrine in human serum and pharmaceutical formulation, Colloid Surf. A: Physicochem. Eng. Asp. 584 (2020) 124038.
    • Mutyala and J. Mathiyarasu, Preparation of graphene nanoflakes and its application for detection of hydrazine, Sens. Actuator B Chem. 210 (2015) 692.
    • Gerard, A. Chaubey and B. Malhotra, Application of conducting polymers to biosensors, Biosens. Bioelectron. 17 (2002) 345.
    • Radhakrishnan, K. Krishnamoorthy, C. Sekar, J. Wilson and S. J. Kim, A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets, Appl.Catal. B: Environ. 148 (2014) 22.
    • Rao, Q. Sheng and J. Zheng, Novel nanocomposite of chitosan-protected platinum nanoparticles immobilized on nickel hydroxide: facile synthesis and application as glucose electrochemical sensor, J. Chem. Sci. 128 (2016) 1367.
    • Amani, A. Khoshroo and M. Rahimi-Nasrabadi, Electrochemical immunosensor for the breast cancer marker CA 15–3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol, Microchim. Acta 185 (2018) 79.
    • Zou, X. Wei, Z. Zong, X. Li, Z. Wang and X. Wang, A novel enzymatic biosensor for detection of intracellular hydrogen peroxide based on 1-aminopyrene and reduced graphene oxides, J. Chem. Sci. 131 (2019) 1.
    • H. Jung, D. S. Cheon, F. Liu, K. B. Lee and T. S. Seo, A graphene oxide based immuno‐biosensor for pathogen detection, Angew. Chem.  122 (2010) 5844.
    • J. Feminus, R. Manikandan, S. S. Narayanan and P. Deepa, Determination of gallic acid using poly (glutamic acid): graphene modified electrode, J. Chem. Sci. 131 (2019) 11.
    • Suganthi and K. Pushpanathan, Paramagnetic nature of Mn doped ZnS nano particles in opto electronic device application, J. Mater. Sci.: Mater. Electron. 27 (2016) 10089.
    • Lv, J. Zhao, B. Situ, B. Li, W. Ma, J. Liu, Z. Wu, W. Wang, X. Yan and L. Zheng, A target-triggered dual amplification strategy for sensitive detection of microRNA, Biosens. Bioelectron. 83 (2016) 250.
    • Yu, W. Wu, X. Pan, Q. Zhao, X. Wei and Q. Lu, High sensitive and selective sensing of hydrogen peroxide released from pheochromocytoma cells based on Pt-Au bimetallic nanoparticles electrodeposited on reduced graphene sheets, Sensors 15 (2015) 2709.
    • Shamkhalichenar and J-W Choi, Review-Non-enzymatic hydrogen peroxide electrochemical sensors based on reduced graphene oxide, J. Electrochem. Soc. 167 (2020) 037531.
    • A. Raymundo‐Pereira, M. Baccarin, O. N. Oliveira Jr and B. C. Janegitz, Thin films and composites based on graphene for electrochemical detection of biologically‐relevant molecules, Electroanalysis 30 (2018) 1888.
    • Beitollahi, F. Movahedifar, S. Tajik and S. Jahani, A review on the effects of introducing CNTs in the modification process of electrochemical sensors, Electroanalysis 31 (2019) 1195.
    • Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding and F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49 (2010) 2114.
    • Britto, K. Santhanam and P. Ajayan, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg. 41 (1996) 121.
    • R. Madhura, G. G. Kumar and R. Ramaraj, Gold nanoparticles decorated silicate sol-gel matrix embedded reduced graphene oxide and manganese ferrite nanocomposite-materials-modified electrode for glucose sensor application, J. Chem. Sci. 131 (2019) 1.
    • Mohammadi, N. Arsalani, A. G. Tabrizi, S. E. Moosavifard, Z. Naqshbandi and L. S. Ghadimi, Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors, Chem. Eng. J. 334 (2018) 66.
    • Bai, Y. Li, P. Jin, J. Wang and L. Liu, Facile preparation 3D ZnS nanospheres-reduced graphene oxide composites for enhanced photodegradation of norfloxacin, J. Alloys Compd. 729 (2017) 809.
    • Nikzad, M. R. Khanlary and S. Rafiee, Structural, optical and morphological properties of Cu-doped ZnS thin films synthesized by sol–gel method, Appl. Phys. A 125 (2019) 1.
    • Kashinath, K. Namratha and K. Byrappa, Sol-gel assisted hydrothermal synthesis and characterization of hybrid ZnS-RGO nanocomposite for efficient photodegradation of dyes, J. Alloys Compd. 695 (2017) 799.
    • De Menezes, F. Ferreira, B. Silva, E. Simonetti, T. Bastos, L. Cividanes and G.Thim, Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites, J. Mater. Sci. 53 (2018) 14311.
    • H. Lee, E. Cho, S. H. Jeon and J. R. Youn, Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers, Carbon 45 (2007) 2810.
    • Pan and X. Liu, ZnS–Graphene nanocomposite: Synthesis, characterization and optical properties, J. Solid State Chem. 191 (2012) 51.
    • Sookhakian, Y. Amin, R. Zakaria, W. J. Basirun, M. Mahmoudian, B. Nasiri-Tabrizi, S. Baradaran and M. Azarang, Significantly improved photocurrent response of ZnS-reduced graphene oxide composites, J. Alloys Compd. 632 (2015) 201.
    • Chen,H. Li, M. Chen, W. Li, Z. Yuan and R. Snyders, Visible-light-driven photocatalytic activities of monodisperse ZnS-coated reduced graphene oxide nanocomposites, Mater. Chem. Phys. 227 (2019) 368.
    • Sharp, M. Petersson and K. Edström, Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface, J. Electroanal. Chem. Interf. Electrochem. 95 (1979) 123.
    • Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. Interf. Electrochem. 101 (1979) 19.
    • J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications 2nd ed. (Wiley: New York), 2001.
    • Galus, Fundamentals of electrochemical analysis (Ellis Horwood: New York), 1976.
    • Mazloum-Ardakani, H. Mohammadian-Sarcheshmeh, A. Khoshroo and M. Abdollahi-Alibeik, Thiosemicarbazide derivative-functionalized carbon nanotube for simultaneous determination of isoprenaline and piroxicam, J. Anal. Sci. Technol. 8 (2017).
    • J. Wu, T. Zhou, Q. Wang and A. Umar, Morphology and chemical composition dependent synthesis and electrochemical properties of MnO2-based nanostructures for efficient hydrazine detection, Sens. Actuator B Chem. 224 (2016) 878.
    • Xu, Y. Liu, S. Xie and L. Wang, Electrochemical preparation of a three dimensional PEDOT–CuxO hybrid for enhanced oxidation and sensitive detection of hydrazine, Anal. Methods 8 (2016) 316.
    • A. Ismail, F. A. Harraz , M. Faisal, A. M. El-Toni, A. Al-Hajry and M. Al-Assiri, A sensitive and selective amperometric hydrazine sensor based on mesoporous Au/ZnO nanocomposites, Mater. Des. 109 (2016) 530.
    • Sohail, M. Altaf, N. Baig, R. Jamil, M. Sher and A. Fazal, A new water stable zinc metal organic framework as an electrode material for hydrazine sensing, New J. Chem. 42 (2018) 12486.
    • Asadi, S. N. Azizi and S. Ghasemi, Preparation of Ag nanoparticles on nano cobalt-based metal organic framework (ZIF-67) as catalyst support for electrochemical determination of hydrazine, J. Mater. Sci.: Mater. Electron. 30 (2019) 5410.
    • Zhang, Y. Zhang, D. Zhang, S. Li, C. Jiang and Y. Su, Confinement preparation of Au nanoparticles embedded in ZIF-67-derived N-doped porous carbon for high-performance detection of hydrazine in liquid/gas phase, Sens. Actuator B Chem. 285 (2019) 607.
    • Zhang, H. Liu, M. Dou, F. Wang, J. Liu, Z. Li and J. Ji, Synthesis and characterization of Co3O4/multiwalled carbon nanotubes nanocomposite for amperometric sensing of hydrazine, Electroanalysis 27 (2015) 1188.
    • Saeb and K. Asadpour-Zeynali, Facile synthesis of TiO2@ PANI@ Au nanocomposite as an electrochemical sensor for determination of hydrazine, Microchem. J. 160 (2021) 105603.
    • Mazloum-Ardakani, Z. Alizadeh, L. Hosseinzadeh, B.B. F. Mirjalili and N. Salehi, An electrochemical based on functionalized carbon nanotube with pyrazole derivative for determination of HZ, IJAC, 6 (2019) 49-56.
    •