با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه شیمی، دانشکده علوم، دانشگاه زابل، زابل، ایران

2 گروه پژوهشی شیمی، پژوهشکده شیمی و پتروشیمی، پژوهشگاه استاندارد، کرج، ایران

چکیده

 
هیدروژن پراکسید (H2O2) کاربرد گسترده‌ای در صنایع مختلف نظیر نساجی، دارویی، بالینی و مواد غذایی دارد. هیدروژن پراکسید به‌طور معمول در غلظت حدود 6% استفاده می‌شود، اما در غلظت بالاتر می‌تواند اکسید کننده، خورنده و سمی باشد. در این تحقیق، یک حسگر الکتروشیمیایی جدید مبتنی بر نانوکامپوزیت هیدروکسید لایه‌ای دوگانه فلزات Cu/Fe تثبیت شده برروی بستر مغناطیسی با موفقیت ساخته شده و برای تشخیص H2O2 مورد استفاده قرار می‌گیرد. جهت بررسی ساختار و ویژگی نانوکامپوزیت تهیه شده از میکروسکوپ الکترونی روبشی، پراش اشعه ایکس، ولتامتری چرخه‌ای و ولتامتری پالس تفاضلی استفاده شد. سپس نانوکامپوزیت برروی الکترود کربن شیشه‌ای تثبیت و فعالیت الکتروکاتالیستی آن در احیاء H2O2  مورد بررسی قرار گرفت. عوامل موثر بر فعالیت الکتروکاتالیستی (مقدار اصلاح‌گر، pH محلول و زمان آنالیز) بررسی و بهینه‌سازی شد. تحت شرایط بهینه، هیدروژن پراکسید یک جریان احیایی خطی از خود نشان داد. هم‌چنین حدتشخیص 3 میکرومولار و تکرار پذیری حسگر تهیه شده در محدوده 2 تا 400 میکرومولار به دست آمد. در نهایت حسگر مربوطه به‌صورت موفقیت آمیز برای تعیین هیدروژن پراکسید با محاسبه بازیابی در نمونه شیر مورد مطالعه قرار گرفت.

کلیدواژه‌ها

  • P. Periasamy, Y.H. Ho and S.M. Chen, Multiwalled carbon nanotubes dispersed in carminic acid for the development of catalase based biosensor for selective amperometric determination of H2O2 and iodate, Biosens. Bioelectron 29 (2011) 151-158.
  • Li, W. Gao, X. Zhang, H. Liu, M. Dou, Z. Zhang and F. Wang, Mesoporous NiO nanosphere: a sensitive strain sensor for determination of hydrogen peroxide, RSC Advances 8 (2018) 13401-13407.
  • Takeda, H. Nojima, K. Kuwahara, R.C. Chidya, A.O. Adesina and H. Sakugawa, Nanomolar determination of hydrogen peroxide in coastal seawater based on the fenton reaction with terephthalate, Anal. Sci 34 (2018) 459-464.
  • Liang, M. Wei, Q. Wang, Z. Zhao, A. Liu, Z. Yu and Y. Tian, Sensitive electrochemical determination of hydrogen peroxide using copper nanoparticles in a polyaniline film on a glassy carbon electrode, Anal. Lett 51 (2018) 512-522.
  • Nakano, T. Honda, K. Yamasaki, Y. Tanaka, K. Taniguchi, R. Ishimatsu and T. Imato, Carbon quantum dots as fluorescent component in peroxyoxalate chemiluminescence for hydrogen peroxide determination, Bull. Chem. Soc. Jpn 91 (2018) 1128-1130.
  • Pourfaraj, S.Y. Kazemi, S.J. Fatemi and P. Biparva, Synthesis of α- and β-CoNi binary hydroxides nanostructures and luminol chemiluminescence study for H2O2 detection, J. Photochem. Photobiol. A: Chem 364 (2018) 534-541.
  • Zarif, S. Rauf, M.Z. Qureshi, N. Samad Shah, A. Hayat, N. Muhammad, A. Rahim, M. Hasnain Nawaz and M. Nasir, Ionic liquid coated iron nanoparticles are promising peroxidase mimics for optical determination of H2O2, Microchim. Acta 185 (2018) 302.
  • Gupta, P. Mahbub, P.N. Nesterenko and B. Paull, A new 3D printed radial flow-cell for chemiluminescence detection: Application in ion chromatographic determination of hydrogen peroxide in urine and coffee extracts, Anal. Chim. Acta 1005 (2018) 81-92.
  • R. Miah and T. Ohsaka, Cathodic detection of H2O2 using iodide-modified gold electrode in alkaline media, Anal. chem 78 (2006) 1200-1205.
  • L. de Mattos, L. Gorton and T. Ruzgas, Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes, Biosens. Bioelectron 18 (2003) 193-200.
  • Razmi, R. Mohammad‐Rezaei and H. Heidari, Self‐assembled prussian blue nanoparticles based electrochemical sensor for high sensitive determination of H2O2 in acidic media, Electroanal 21 (2009) 2355-2362.
  • S. Kitte, D.B. Assresahegn and R.T. Soreta, Electrochemical determination of hydrogen peroxide at glassy carbon electrode modified with palladium nanoparticles, J. Serb. Chem. Soc 78 (2013) 701-711.
  • Rui, K. Komori, Y. Tian, H. Liu, Y. Luo and Y. Sakari, Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets, Anal. Chim. Acta 670 (2010) 57-62.
  • H. Wang and L.M. Zhang, Using novel polysaccharide− silica hybrid material to construct an amperometric biosensor for hydrogen peroxide, J. Phys. Chem. B 110 (2006) 24864-24868.
  • A. Ensafi, M.M. Abarghoui and B. Rezaei, Electrochemical determination of hydrogen peroxide using copper/porous silicon based non-enzymatic sensor, Sensor. Actuat. B-Chem 196 (2014) 398-405.
  • Ahmar, S. Keshipour, H. Hosseini, A.R. Fakhari, A. Shaabani and A. Bagheri, Electrocatalytic oxidation of hydrazine at glassy carbon electrode modified with ethylenediamine cellulose immobilized palladium nanoparticles, J. Electroanal. Chem 690 (2013) 96-103.
  • Guo, F. Zhang, D.G. Evans and X. Duan, Layered double hydroxide films: synthesis, properties and applications, Chem. Comm 46 (2010) 5197-5210.
  • Mishra, B. Dash and S. Pandey, Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials, Appl. Clay Sci 153 (2018) 172-186.
  • Soussou, I. Gammoudi, F. Morote, A. Kalboussi, T. Cohen-Bouhancina, C. Grauby-Heywang and Z.M. Baccar, Efficient immobilization of tyrosinase enzyme on layered double hydroxide hybrid nanomaterials for electrochemical detection of polyphenols, IEEE Sens. J 17 (2017) 4340-4348.
  • Saikia, A. Borah and R.L. Goswamee, Hybrid nanocomposites of layered double hydroxides: an update of their biological applications and future prospects, Colloid Polym. Sci 295 (2017) 725-747.
  • Baig and M. Sajid, Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: a review, Trends Environ. Anal. Chem 16 (2017) 1-15.
  • Rezaei, M. Heidarbeigy, A.A. Ensafi and M. Dinari, Electrochemical determination of papaverine on Mg-Al layered double hydroxide/graphene oxide and CNT modified carbon paste electrode, IEEE Sens. J 16 (2016) 3496-3503.
  • Yin, L. Cui, S. Ai, H. Fan and L. Zhu, Electrochemical determination of bisphenol A at Mg–Al–CO3 layered double hydroxide modified glassy carbon electrode, Electrochim. Acta 55 (2010) 603-610.
  • Hushiarian, N.A.Yusof, A.H. Abdullah, S.A. Alang Ahmad and S.W. Dutse, Facilitating the indirect detection of genomic DNA in an electrochemical DNA biosensor using magnetic nanoparticles and DNA ligase, Anal. Chem. Res 6 (2015) 17-25.
  • Zabardasti, H. Afrouzi and R.P. Talemi, A simple and sensitive methodology for voltammetric determination of valproic acid in human blood plasma samples using 3-aminopropyletriethoxy silane coated magnetic nanoparticles modified pencil graphite electrode, Mater. Sci. Eng C 76 (2017) 425-430.
  • Adlnasab, M. Ezoddin, M. Shabanian and B. Mahjoob, Development of ferrofluid mediated CLDH@Fe3O4@Tanic acid- based supramolecular solvent: Application in air-assisted dispersive micro solid phase extraction for preconcentration of diazinon and metalaxyl from various fruit juice samples, Microchem. J 146 (2019) 1–11.
  • Ezoddin, L. Adlnasab, A. Afshari kaveh, M.A. Karimi and B. Mahjoob, Development of air‐assisted dispersive micro solid phase extraction based supramolecular solvent‐mediated Fe3O4@Cu‐Fe–LDH for the determination of tramadol in biological samples, Biomed. Chromatogr 33 (2019) e4572.
  • Yan, K. Yang, R. Shan, T. Yan, J. Wei, S. Yu, H. Yu and B. Du. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core–shell Fe3O4@LDHs composites with easy magnetic separation assistance, J. Colloid Interface Sci 448 (2015) 508–516.
  • Laipan, H. Fu, R. Zhu, L. Sun, J. Zhu and H. He,Converting spent Cu/Fe layered double hydroxide into Cr(VI) reductant and porous carbon material, Scientific Reports (2017) 7: 7277, 1-11.
  • Baskar, JIA Zhaohua, D. Lingmei, L. Dehua and D. Wei, Lipase NS81006 immobilized on Fe3O4 magnetic nanoparticles for biodiesel production, Ovidius University Annals of Chemistry, 27 (2016) 13-21.
  • K. HanhTa, M.T. Trinh, N.V. Long, T.T.M. Nguyen, T.L.T. Nguyen, T.L. Thuoc, B.T. Phan, D. Mott, S. Maenosono, H. Tran-Van, V.H. Le, Synthesis and surface functionalization of Fe3O4@SiO2 core-shell nanoparticles with 3-glycidoxypropyltrimethoxysilane and 1,1′-carbonyldiimidazole for bio-applications, Colloid. Surface 504 (2016) 376-383.
  • Zhou, M. Lei, J. Li, K. Zhao and Y. Liu, Sensitive determination of bisphenol A, 4-nonylphenol and 4-octylphenol by magnetic solid phase extraction with Fe@MgAl-LDH magnetic nanoparticles from environmental water samples, Sep. Purifi. Technol 182 (2017) 78-86.
  • Tang, G.H. Chia and H.K. Lee, Magnetic core shell iron (II,III) oxide@layered double oxide microspheres for removal of 2,5-dihydroxybenzoic acid from aqueous solutions, J. Colloid Interf. Sci 437 (2015) 316-323.
  • K. Yadav, V. Ganesan, R. Gupta, M. Yadav, P.K. Sonkar and P.K. Rastogi, Copper oxide immobilized clay nano architectures as an efficient electrochemical sensing platform for hydrogen peroxide, J. Chem. Sci132, (2020) 1-10.
  • F. Pang, Z.M. Yang, S.X. Xiao, J.L. Xie, Y.L. Zhang and Y.T. Gao, Nonenzymatic amperometric determination of hydrogen peroxide by graphene and gold nanorods nanocomposite modified electrode, J. Electroanal. Chem 727 (2014) 27-33.
  • Yang, F.B. Xiao, H.W. Lin, F. Wu, D.Z. Chen and Z.Y. Wu, A novel H2O2 biosensor based on Fe3O4-Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets-Nafion film modified screen-printed carbon electrode, Electrochim. Acta 109 (2013) 750-755.
  • Liu, J. Tian, L. Wang and X. Sun, A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection, Carbon 49 (2011) 3158-3164.
  • Liu, J. Tian, L. Wang, H. Li, Y. Zhang and X. Sun, Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection, Macromolecules 43 (2010) 10078-10083.
  • Xu, M. Deng, G. Li, S. Chen and L. Wang, Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing, Electrochim. Acta 88 (2013) 59-65.
  • Zhang, Q. Sheng, F. Nie and J. Zheng, Synthesis of Cu nanoparticles-loaded Fe3O4@ carbon core–shell nanocomposite and its application for electrochemical sensing of hydrogen peroxide. J. Electroanal. Chem. 730 (2014) 10-15.
  • S. Lai, H.L. Zhang and D.Y. Han, A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode, Sensor. Actuat B-Chem 129 (2008) 497-503.
  • I. Fort, L.C. Cotet, V. Danciu, G.L. Turdean and I.C. Popescu, Iron doped carbon aerogel new electrode material for electrocatalytic reduction of H2O2, Mater. Chem. Phys 138 (2013) 893-898.
  • A. Kitte, B.D. Assresahegn and T.R. Soreta, Electrochemical determination of hydrogen peroxide at a glassy carbon electrode modified with palladium nanoparticles, J. Serb. Chem. Soc 78 (2013) 701-711.
  • L. Turdean, A. Curulli, I. Catalin Popescu, C. Rosu and G. Palleschi, Electropolymerized architecture entrapping a trilacunary keggin, type polyoxometalate for assembling a glucose biosensor, Electroanalysis 14 (2002) 1550-1556.
  • Wang, X. Wang, L. Bi, G. Zhu, Sol-gel-derived α2-K7P2W17VO62/graphite/ organoceramic composite as the electrode material for a renewable amperometric hydrogen peroxide sensor, J. Electroanal. Chem 495 (2000) 51-56.