با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه شیمی، دانشکده علوم، دانشگاه پیام نور، تهران، ایران

2 گروه مهندسی علوم دامی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

چکیده

چکیده
هدف از مطالعه حاضر، توسعه حسگرهای الکتروشیمیایی مبتنی بر الکترود گرافیتی اصلاح شده با ذرات اکسید روی، نانو ذرات CdO و پتاسیم تترا کلروپلاتینات (II)، برای یک میکرواستخراج همزمان ساده و سریع و تعیین آسپرین و ایبوپروفن بود. این نانوذرات در ابتدا با استفاده از چهار عصاره گیاهی شامل سیر، پیاز، پیاز سبز و کلم سنتز شدند. سپس نانوذرات و پلاتین ساخته شده بر روی سطح یک الکترود گرافیتی مدادی رسوب کردند و به عنوان یک الکترود کار در یک سیستم سه الکترودی مورد استفاده قرار گرفتند. برای بررسی اثرات پارامترهای مختلف از طرح آزمایشی تاگوچی استفاده شد. برای این منظور از طرح آرایه متعامد تاگوچی L16 (OA) استفاده شد و نتایج با آزمون ANOVA تایید شد. رفتار الکتروشیمیایی آسپرین و ایبوپروفن در الکترودهای اصلاح شده مورد بررسی قرار گرفت. منحنی های کالیبراسیون به ترتیب برای آسپرین و ایبوپروفن در محدوده 5.17 تا 134.0 میکروگرم بر میلی لیتر و 3.13 تا 231.0 میکروگرم بر میلی لیتر در لیتر خطی بودند. حدود تشخیص برای آسپرین و ایبوپروفن به ترتیب 0.50 و 0.42 میکروگرم بر میلی لیتر در لیتر محاسبه شد. حسگر اصلاح شده عملکرد خوبی برای آنالیز همزمان آسپرین و ایبوپروفن در نمونه های بیولوژیکی و دارویی نشان داد.

کلیدواژه‌ها

  •  

    • Ausina, J. R. Branco, T. M. Demaria, et al, Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide‑dependent endoplasmic reticulum stress and apoptosis, Sci. Rep. 10 (2020) 19617-32.
    • Anuar, A.H. Sabri, T.J. Bustami, K. Abdulhamid, Development and characterization of Ibuprofen-loaded nano emulsion with enganced oral bioavailability, J. Heliyon. 6 (2020) e 04570.
    • Sultana, S. Arayne, S. Nadirali, Synthesis and Spectrophotometric Determination Ibuprofen Charge Transfer Complexes with P-Chloranil, 7, 7, 8, 8-Tetracyano quino dimethane, Bromothymol Blue, Methyl Orange and Picric Acid, J. Bioanal. Biomed. 5 (2013) 122-129.
    • Wudarska, E. Chrzescijanska, E. Kusmierek, J. Rynkowski, Electrochemical Behavior of 2-(p-isobutylphenyl) propionic Acid at Platinum Electrode, Int. J. Electrochem. Sci. 10 (2015) 9433-42.
    • Suresh, E. Sundaram, B. Kavitha, S. M. Rayappan, Simultaneous electrochemical determination of paracetamol and ibuprofen at the glassy carbon electrode, J. Adv. Chem. Sci. 2 (2016) 369-372.
    • Zayed, H. Arida, Voltammetric Determination of the Cough Suppressant Drug Dropropizine in its Pharmaceutical Formulations and Human Urine, Int. J. Electrochem. Sci. 10 (2015) 3250-3259.
    • T. Rajendran, K. Huszno, G. Debowski, et al, Tissue-based biosensor for monitoring the antioxidant effect of orally administered drugs in the intestine, Bioelectrochemistry. 138 (2021) 107720-27.
    • Patrono, The Multifaceted Clinical Readouts of Platelet Inhibition by Low-Dose Aspirin, J. Am. Coll. Cardiol. 66 (2015) 74-85.
    • Motoc, Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution using HKUST-1 metal-organic framework-carbon nano fiber composite electrode, Sensors. 16 (2016) 1-10.
    • Chen, X. wu, T. Luan, et al, Sample preparation and instrumental methods for illicit drugs in environmental and biological samples, J. Chromatogr. A. 1640 (2021)14961-70.
    • B. Lima, E. O. Faria, R. H. O. Montes, et al, Electrochemical Oxidation of Ibuprofen and Its Voltammetric Determination at a Boron-Doped Diamond Electrode, Electroanal. 25 (2013) 1585-1588.
    • Cao, J. Kiely, M. Piano, R. Luxton, Nanoparticle-based 3D membrane for impedimetric biosensor applications, Bioelectrochemistry. 136 (2020) 107593-107603.
    • Manjunatha, C. C. Vidyasagar, Y. A. Nayaka, Voltammetric Studies of Aspirin in Pharmaceutical Sample Using C tab - Pencil Graphite Electrode, Org. Med. Chem. 1 (2017) 1-5.
    • Dogan-topal, B. Bozal-palabiyik, S. A. Ozkan, B. Uslu, Electrochemical oxidation mechanism of anticancer drug nilotinib, Rev. Roum. Chim. 60 (2015) 467-475.
    • I. Gowda, A.T. Buddanavar, S.T. Nandibewoor, Fabrication of multiwalled carbon nanotube-surfactant modified sensor for the direct determination of toxic drug 4-aminoantipyrine, J. Pharm. Anal. 5 (2015) 231-238.
    • Kruanetr, R. Prabhu, P. Pollard, C. Fernandez, Pharmaceutical electrochemistry: The electrochemical detection of aspirin utilising screen printed graphene electrodes as sensors platforms, Surf. Eng. Appl. Electrochem. 51 (2015) 283-289.
    • Bhumi, N. Savithramma, Biological Synthesis of Zinc oxide Nanoparticles from Catharanthus roseus (l.) G. Don. Leaf extract and validation for antibacterial activity, Int. J. Drug. Dev & Res. 6 (2014) 208-214.
    • Pourbeyram, Kh. Mehdizadeh, Nonenzymatic glucose sensor based on disposable pencil graphite electrode modified by copper nanoparticles, J. Food. Drug. Anal. 24 (2016) 894-902.
    • Hatamluyi, F. Lorestani, Z. Es’haghi, Au/Pd@rGO nanocomposite decorated
      with poly (L-Cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs, Ifosfamide and Etoposide, Biosens. Bioelectron. 30 (2018) 22-29.
    • Es'haghi, T. Heidari, E. Mazloomi, In situ pre-concentration and voltammetric determination of trace lead and cadmium by a novel ionic liquid mediated hollow fiber graphite electrode and design of experiments via Taguchi method, Electrochim. Acta. 147 (2014) 279-287.
    • Mohammed. F. Alsaggaf Ashraf, E. B. Elbaz Sherin, H. M. Shaaban, Anticancer and Antibacterial Activity of Cadmium Sulfide Nanoparticles by Aspergillus niger, Adv. Poly. Tech. (2020), ID 4909054.
    • Naghian, E. Marzi Khosrowshahi, E. Sohouli, et al, Electrochemical oxidation and determination of antiviral drug acyclovir by modified carbon paste electrode with magnetic CdO nanoparticles, Fron. Chem. 8 (2020) 689 -699.
    • Sowmya, G. Megala, S. Venkat Kumar, Green approach on a chiening zinc oxide nanoparticles and its potential bacterical as well as antioxidant activity, IJPSR. 11 (2020) 1350-57.
    • M. Mahmoud, R. B. Kassab, A. E. Abdel-moneim, Zinc oxide nanoparticles ameliorate aluminum chloride-induced hepato-renal oxidative stress and inflammation in rats, Int. J. Pharm. Pharm. Sci. 12 (2020) 11-20.
    • Green and Chemical Syntheses of CdO NPs: A Comparative Study for Yield Attributes, Biological Characteristics, and Toxicity Concerns, M. Nasrullah, F. Zareen Gul, S. Hanif, et al, Omega. 5 (2020) 5739-5747.
    • AsgharS. HabibW. Zaman, et al, Synthesis and characterization of microbial mediated cadmium oxide nanoparticles, Epub. 83 (2020) 1574-1584.
    • Azama, A. Ayazb, M.Younas, et al, Microbial synthesized cadmium oxide nanoparticles induce oxidative stress and protein leakage in bacterial cells, Microb. Pathog. 114 (2020) 104188-95.
    • Tabatabaee, A. A. Mozafari, M. Ghassemzadeh, M. R. Nateghi, I. Abedini, A Simple Method for Synthesis of Cadmium Oxide Nanoparticles Using Polyethylene Glycol. Bulgar. Chem. Commun. 45(2013) 90-92.
    • S. Aldwayyan, F. M. Al-Jekhedab, et al, Synthesis and Characterization of CdO Nanoparticles Starting from Organometalic Dmphen-CdI2 complex, Int. J. Electrochem. Sci. 8 (2016) 10506-10514.
    • N. Hasnidawani, H. N. Azlina, et al, Synthesis of ZnO Nanostructures Using Sol Gel Method, Proced. Chem. 19 (2016) 211-216.
    • Narayana, S.A. Bhat, A. Fathima, et al, Green and low-cost synthesis of Zinc Oxide nanoparticles and their application in transistor-based carbon monoxide sensing, RSC. Adv. 10 (2020) 13532-13542.
    • G. Demissie, F. K. Sabir, G. D. Edossa, B. A. Gonfa, Synthesis of Zinc Oxide Nanoparticles Using Leaf Extract of Lippia adoensis (Koseret) and Evaluation of Its Antibacterial Activity, J. Chem. (2020) ID 7459042-50.
    • A. Sadraei, Simple Method for Preparation of Nano-sized ZnO, Res & Rev. J. Chem.5 (2016) 45-49.
    • M. George, M. T. Aswani, M. V. Pavan Kumar, B. Varghese, Green synthesis of ZnO nanoparticles, AIP Conference Proceedings. 2263 (2020) 020001-8.
    • R. Ghorbani, F. ParsaMehr, H. Pazoki, M. Rahmani, Synthesis of ZnO Nanoparticles by Precipitation Method, Orient. J. Chem. 31 (2015) 1219-1221.
    • Imran, K. Vaishali, et al, Platinum and zinc oxide modified carbon nitride electrode as non-enzymatic highly selective and resuable electrochemical diabetic sensor in human blood, Bioelectrochemistry. 137 (2020) 107645-55.
    • B. Tanuja, B. E. Kumara Swamy, K. Vasantakumar Pai, Cyclosporine/SDS Modified Carbon Paste Electrode for Electrochemical Study of Dopamine: A Cyclic Voltammetric Study. Insights. Anal. Electrochem. 2 (2016) 2-8. doi: 10.21767/2470-9867.100016
    • Krukiewicz, A. Kowalik, R. Turczyn, M. J. P. Biggs. Invitro attenuation of astrocyte activation and neurion flammation through ibuprofen-doping of poly (3,4-ethylenedioxy pyrrole) formulations. Bioelectrochemistry. 134 (2020) 107528.-37.
    • M. Do- Prado, F. H. Cincotto, S. A. S. Machado, Spectro electrochemical study of acetylsalicylic acid in neutral medium and its quantification in clinical and environmental samples, Electrochim. Acta. 233 (2017) 105-112.
    • Manjunatha, C. C. Vidyasagar, Y. Arthoba Nayak, Voltammetric Studies of Aspirin in Pharmaceutical Sample Using C tab - Pencil Graphite Electrode, Organic & Medicinal. Chem. IJ. 3 (2017). ID.555567.
    • Ghadimi, R. M. A. Tehrani, W. J. Basirun, et al, Electrochemical determination of aspirin and caffeine at MWCNTs-poly-4- vinyl pyridine composite modified electrode, J. Taiwan. Inst. Chem. 65 (2016) 101-109.
    • Yi-git, Y. Yardım, M. Celebi, A. Levent, Z. Senturk, Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations, Talanta. 158 (2016) 21-29.
    • M. Saeed, N. Q. Ahmed, Estimation of paracetamol, aspirin, ibuprofen, codeine and caffeine in some formulated commercial dosage using UV spectroscopic method, Eur. J. Pharm. Med. Res. 4 (2017) 33-38.
    • Liang, Y. Huang, W. Liu, W. Zuo, et al, Colorimetric Detection of Salicylic Acid in Aspirin Using MIL-53(Fe) Nanozyme, Front. Chem. 8 (2020) 671-80.
    • S. Jalbani, A.R. Solangi, M.Y. Khuhawar, et al, Gas Chromatographic and Spectrophotometric Determination of Diclofenac Sodium, Ibuprofen, and Mefenamic Acid in Urine and Blood Samples, Turk. J. Pharm. Sci. 17 (2020) 465-473.
    • Encarnacao, A. Aguiar, C. Palito, et al, Development and validation of a RP-HPLC method for the simultaneous analysis of paracetamol, ibuprofen, olanzapine, and simvastatin during microalgae bioremediation, Methods. X. 7 (2020) 101083-89.
    • M. Madikizel, L. Chimuka, Simultaneous determination of naproxen, ibuprofen and diclofenac in waste water using solid-phase extraction with high performance liquid chromatography, Water. 43 (2017) 264-274.