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1. INTRODUCTION  
Ascorbic acid (AA), Uric acid (UA), 
Acetaminophen (AC) and Noradrenalin (NA) 
usually can coexist in biological matrixes and 
they were investigated as main molecules for 
biological processes in human metabolism. For 
example, Ascorbic acid (AA, vitamin C), a water-
soluble compound, generally exists in many fruits 
and plants [1]. It is also can prevent free radical-
induced diseases, such as cancer and Parkinson’s 
disease, through the reaction with free radicals 
[2]. Uric acid (UA) is another important 
biomolecule in human body, which is the primary 
product of purine metabolism [3].Abnormal 
concentration level of UA may cause such 
diseases as hyperuricaemia, gout and the Lesch–
Nyan disease [4].Acetaminophen (AC) is a 
widely used analgesic and antipyretic drug [5]. 
Overdoses of acetaminophen produce toxic 
metabolites accumulation in liver, which may 
cause severe andsometimes fatal hepatoxicity 
[6,7] and nephrotoxicity [8].Noradrenalin (NA) is 
a neurotransmitter belonging to a catecholamine 
type hormone [9] that is manufactured as a drug. 
Alsocalled norepinephrine, especially by those in 
the medical field [10]. 
Many methods such as high performance liquid 
chromatography (HPLC) [11,12], gas 
chromatography [13], capillary zone 

electrophoresis [14],ion chromatography [15], 
biological fluids including titrimetry [16], UV–
Vis spectrophotometry [17,18], have been 
reportedfor the determination of mentioned 
analyte.Nevertheless, above methodsare usually 
time-consuming, complicated and partly 
expensive. But electrochemical methods have 
gained much attention because of their quick 
response, high sensitivity, high accuracy, simple 
operation mode, low cost as well as ability to 
miniaturize.Their similar structural patterns and 
electrochemical signals, show overlapping when 
using conventional electrodes. Therefore, it is 
important to develop new approaches for the 
simultaneous determinations of these drugs. An 
attractive way is the use of chemometric and 
multivariate calibration methods. 
One problem which restricted the application of 
chemometrics in electroanalytical chemistry is the 
non-linearity of electrochemical data [19]. 
According to the literature, the shift in 
electrochemical responses can be originated from 
adsorptive phenomena on the electrode surface, 
pH variations in the cell or fluctuations in the 
composition of cell solution [20]. However, this 
situation has been scarcely described for 
electrochemical signals. Whereaszeroth-order 
univariate calibration cannot detect sample 
components producing an interfering signal, first-

 

Application of Non-bilinear Voltammetric Data for the First-

Order Excellence in Simultaneous Determination of Ascorbic Acid, 

Uric Acid, Acetaminophen and Noradrenalin in Interfering Media 
 

1, Zarrin Es'haghi2Bagher Gholivand-, Mohammad*1Ghobad Mansori 

1. Department of Chemistry, Payam Noor University, P.O. Box 19395-4697, Tehran, Iran  

2. Faculty of Chemistry, Razi University, Kermanshah 671496734, Iran 
Received: 15 January 2022            Accepted: 12 February 2022  

DOI: 10.30473/IJAC.2022.62555.1221 

   

Abstract 
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possible interferents present in the serum, and it was validated and tested with two independent sets of analytes 
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serum samples . 
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order MVC, which operates using a vector of data 
per sample, may compensate for these potential 
interferents, provided they are included in the 
calibration set,a property known as the “first-
order advantage” [21]. The MVC methods are 
increasingly used to extract relevant information 
from different types of absorptive spectral and 
electrochemical data,which have maximum 
information regarding the analyte of interest while 
discards those carrying irrelevant information 
(noise, saturation regions) or those heavily 
overlapped with other sample components which 
are not of interest, to predict analyte 
concentrations or properties of complex samples 
[22–24]. A basic assumption for application of 
linear MVC models is the data bilinearity, which 
may be compromised by the above commented 
potential shifts. Therefore several strategies have 
been developed for the calibration of non-linear 
data systems such as: a) data pretreatment or data 
alignment; for this reason, data alignment was 
performed before applying PLS-1, b)the use of 
linear methods (for slight nonlinearities only), c) 
the use of local modeling, d) the addition of extra 
variables, e) the use of non-linear calibration 
techniques [25-27] and the most important linear 
calibration method is PLS [28].Mathematical pre-
processing techniques exist for removing 
variations in voltammograms from run to run, 
which are unrelated to analyte concentration 
changes [29,30]. The removal of these unwanted 
effects leads to more parsimonious PLS models 
and often produce better statistical indicators. 
Three type of MVC models were usually used 
such as: classical linear (PLS-1, CPR, and MLR), 
robust linear (PRM, and RCR) and non- linear 
(PLY-PLS, SPL-PLS, RBF-PLS, LS-SVM, WT-
ANN, DWT-ANN, and BP-ANN) that we choose 
PLS-1 (from classical class) and BP-ANN (from 
non-linear class) methods for determining the 
concentration of the studied analytes. 
In this work, we present the development of an 
electroanalytical methodology based on DPVat a 
GCE and comparison of two chemometric 
approachesincluding classical linear (PLS-1)and 
non- linear (BP-ANN)MVC models for the 
simultaneous determination of four studied 
analytesin human serum samples which have a 
very complex matrix.Literature survey revealed 
that no attempt has been made till date to the 
simultaneous voltammetric determination of AA, 
UA, AC, and NA with the aid of Chemometrics. 
 

2. EXPERIMENTAL 

2.1. Chemicals and solutions 
AA, UA, AC, and NAwere purchased from 
Sigma-Aldrich.A phosphate buffered solution 
(PBS, 0.1mol L-1) of pH2.0was prepared from 
chemicals (analytical grade) including NaH2PO4 

and Na2HPO4from Merck.All other chemicals 
used in the investigation were of analytical grade 
obtained from regular sources and used without 
further purification.Stock standard solutions of 
AA, UA, AC, and NA were prepared by exact 
weighing and dissolving of their solid powder in 
distilled water (10.0 mL) with a concentration 
level of 0.1 mol L-1and were stored at dark in a 
refrigerator until analysis time. Working solutions 
were prepared by appropriate dilution of the stock 
standard solutions with PBS (0.1mol L-1, pH 2.0). 
All the solutions were prepared by doubly 
distilled water (DDW). 
 
2.2. Apparatus and softwares 
Electrochemical experiments were performed 
using anAutolab(Eco Chemie BV, Netherlands) 
controlled by the NOVA software (Version 1.8). 
A conventional three-electrode cell was used with 
a saturated Ag/AgCl as reference electrode, a Pt 
wire as counter electrode and a GCE as working 
electrode. The pH of the solutions was adjusted 
using aJENWAY-3510pH meter equipped by a 
combined glass electrode.All the recorded 
electrochemical data was smoothed, when 
necessary, and converted to data matrices by the 
use of several home-made m-files in MATLAB 
environment (Version 7.14, MathWorks, Inc.). 
All the computations for baseline correction, data 
alignment and multivariate calibration (MVC) 
were performed in MATLAB environment.All the 
computations were performed on a DELL XPS 
laptop (L502X) with Intel Core i7-2630QM 
2.0GHz, 8 GB of RAM and Windows 7-64 as its 
operating system. 
 
2.3. Preparation of theserum samples 
A blank human serum sample (drug-free) was 
provided by a healthy volunteer who not exposed 
to any drug for at least 10.0 months. An actual 
human serum sample was collected from apatient 
under AC treatmentwhich kindly provided by a 
Medical Diagnostic Laboratory in Kermanshah, 
Iran. The following methodology was used to 
prepare all the serum samples: according to the 
method of Shu et al. [31], to eliminate protein and 
other substances, 5.0 mL of human serum sample 
was placed in a10.0 mL glass tube and 5.0 mL of 
15.0 % (w/v) Zinc Sulfate solution-Acetonitrile 
(50/40,v/v) was added. The glass tube was 
vortexed for 20.0 min, maintained at 4.0 °C for 
15.0 min followed by centrifugation at 4000.0 
rpm for 5.0 min. Then, the supernatant was 
collected in the same tube and this solution was 
used for subsequent analyses.  

 

2.4. Model efficiency estimation 

Whether a model can be applied to analysis of 

human serum samples or not, model validation is 
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possibly the most important step in the model 

building sequence. In order to evaluate the 

performance of MVC models, each model was 

validated for the prediction of validation and test 

sets, evaluating root mean square errors of 

prediction (RMSEP), and relative error of 

prediction (REP). 
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where yact and ypred are actual and predicted 

concentrations of each component, respectively, 

andnis the number of samples in validationor test 

set.  

 

2.5. Electrochemical procedure 

Prior to electrochemical experiments, the GCE 

was successively polished to a mirror using 0.3 

and 0.05 µm Alumina slurry. Afterward, the 

electrode was washed thoroughly with ethanol 

and DDW and dried at room temperature. All 

electrochemical experiments were carried out at 

room temperature. The DPV measurements were 

carried out at the following operating conditions 

for the four studied analytes: step potential 0.005 

V, modulation amplitude 0.025 V, modulation 

time 0.05 s,interval time 0.5 s, and scan rate 0.05 

V s-1.  

 

3. RESULT AND DISCUSSION 

3.1. Electrochemical studies  

3.1.1. pH dependencestudy 

To select the best pH for the simultaneous 

determination of AA, UA, AC, and NA, the effect 

of pH on the peak current of the cyclic 

voltammograms of AA, UA, AC, and NA was 

investigated. Fig. 1A-D shows the influence of 

the pH of the PBS (0.1mol L-1), in the range of 

2.0-10.0, on the signal intensities of 0.1 mM AA, 

UA, AC, and NA. As can be observed in Fig.1 A-

D, all peak currents of the studied analytes have a 

maximum value at pH 2.0. Taking into account 

that for analytical purposes both maximal and 

stable currents are necessary, a pH value of 2.0 

was selected for further experiments. The 

oxidation peak potential of all studied analytes 

shifted to less positive values as the pH of the 

buffer solution was increased (Fig. 1A-D). 

 

 

 

 

 
Fig. 1.Cyclic voltammograms of (A) AA (0.1×10-3 mol 

L-1), (B) UA (0.1×10-3 mol L-1), (C) AC (0.1×10-3 mol 

L-1), and (D) NA (0.1×10-3mol L-1), in 0.1mol L-1 PBS 

at different pHs.  

 

3.1.2. Effect of scan rate 

The influences of scan rate (υ) on the peak current 

(IP) of AA, UA, AC, and NA at the GCE in PBS 

(0.1mol L-1, pH 2.0) were studied by cyclic 

voltammetry. Fig. 2 A-D shows the influence of 

the scan rate (υ) on the peak current (IP) of 0.1 

mM AA, UA, AC, and NA at the GCE in PBS 
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(0.1 mol L-1, pH 2.0). In the range of 10.0-1000.0 

mV s-1, a linear relationship was established 

between IP andυ1/2, for all of the studied analytes, 

indicating the diffusion controlled mechanism 

except UA.The linear regression equations areIp, 

AA(µA)=3.7828+27.486υ1/2V s-1(R2=0.9920), Ip, 

UA(µA)=-2.683+45.517υV s-1(R2= 0.9823),Ip, 

AC(µA)=0.5868-0.2653υ1/2 V s-1 (R2= 0.9914) 

andIp, NA(µA)=-0.5157+8.8232υ1/2V s-1(R2= 

0.9980). 

 

 

 

 

 
Fig. 2.Cyclic voltammograms of (A) AA (0.1×10-3 mol 

L-1), (B) UA (0.1×10-3 mol L-1), (C) AC (0.1×10-3 mol 

L-1), and (D) NA (0.1×10-3 mol L-1), in 0.1 mol L-1 PBS 

(0.1 mol L-1, pH 2.0) at different scan rate.Insets: 

dependence of Ip with scan rate. 

 

3.2. Chemometric studies 

3.2.1. A glance to necessity of MVC 

Fig. 3shows the cyclic voltammograms of AA 

(curve a), UA (curve b), AC (curve c), NA (curve 

d), and their mixture (curve e) in PBS (0.1mol L-1, 

pH 2.0). In all conditions evaluated, a strong 

signal overlapping was observed for the 

simultaneous analysis of AA, UA, AC, and NA at 

the GCE (see Fig. 3, curvee). Thus, the 

quantification of any of these analytes will be 

biased if univariate calibration is used as 

analytical method, and for tackling this problem it 

was necessary to use MVC. 

 

 

 

 
Fig. 3.Cyclic voltammograms of AA (curve a), UA 

(curve b), AC (curve c), NA (curve d), and their 

mixture (curve e) in PBS (0.1 mol L-1, pH 2.0). 
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3.2.2. Calibrations 

3.2.2.1. Univariate calibrations 

Prior to multivariate calibration experiments, 

univariate calibration experiments were 

performed (Fig. 4A-D) and calibration curves 

were constructed with several points as peak 

current versus analyte concentration in the 

range10.0 to 360.0 ×10-6 mol L-1for AA (inset of 

Fig. 4A), 5.0to 370.0×10-6 mol L-1for UA (inset of 

Fig. 4B), 1.0 to 80.0×10-6mol L-1 for AC (inset of 

Fig. 4C), 3.0 to 150.0×10-6 mol L-1for NA (inset 

of Fig. 4D), and evaluated by linear 

regressionwhich were the limiting assayed 

concentrations in subsequent analyses. All 

analytes showed linear dependences between 

peak current and concentration at different 

concentrations intervals. 

 

3.2.2.2. Multivariate calibrations 

When the analytes are analyzed in the presence of 

interferences, the electrochemical profile revealed 

additional changes to those observed in the 

absence of interferences. The main changes 

observed were minor alterations in the baseline 

and displacement of peak potential, probably due 

to modification in viscosity of the solution and 

consequently the diffusion coefficient of the 

analytes. This effect produces alterations in the 

chemometrics responses and for this reason, the 

calibration and validation sets were prepared in a 

blank human serum sample (drug-free). 

 

3.2.2.2.1. Calibration set 

The human serum has a complex matrix and may 

contain a lot of unexpected interferences 

therefore, if the presence of these interferences 

was not considered during calibration, a first-

order MVC model would give biased predictions 

of the concentration of the analytes of interest. 

Therefore, the calibration set was prepared in a 

blank human serum sample (drug-free) which was 

collected from a healthy volunteer to regard the 

complex matrix of the serum sample which may 

contain a lot of unexpected interferences. This 

strategy was applied in order to provide PLS-1 

and BP-ANNenough information concerning the 

signals of the analytes when they are embedded 

into the real background. All the calibration 

mixtures (the compositions of the calibration 

mixtures were selected according to a central 

composite design (CCD), (Table 1) were prepared 

in the blank human serum sample spiked with an 

appropriate amount of each analyte of interest 

considering the linear calibration ranges 

(previously established from univariate 

calibrations for each analyte).All samples were 

diluted with PBS (0.1 mol L-1, pH 2.0) to adjust 

the pH and then appropriate amounts of these 

diluted samples were transferred to the 

electrochemical cell, and the solutions were 

measured in random order.Final concentration of 

each analyte was obtained by multiplying the 

detected value by the appropriate dilution factor. 

 

 

 

 
Fig. 4. Representative differential pulse 

voltammograms of (A) AA, (B) UA, (C) AC, and (D) 

NA,PBS (0.1 mol L-1, pH 2.0)at different 

concentrations. Insets: dependence of Ip with 

concentration. 
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Table 1. Concentration data of calibration set (C1-C30), validation set (V1-V10), and test set (T1-T10). 

Sample AA 
(10-6  

mol L-1) 

UA 
(10-6  

mol L-1) 

AC 
(10-6  

mol L-1) 

NA 
(10-6  

mol L-1) 

  Sample AA 
(10-6 

mol L-1) 

UA 
(10-6 

mol L-1) 

AC 
(10-6 

mol L-1) 

NA 
(10-6 

mol L-1) 

C1 97.5 96.25 20.75 39.75  V1 20 12 4 5 

C2 97.5 96.25 20.75 113.25  V 2 45 32 55 16 

C3 97.5 96.25 60.25 39.75  V 3 32 76 33 72 

C4 97.5 96.25 60.25 113.25  V 4 17 11 78 33 

C5 97.5 278.75 20.75 39.75  V 5 54 55 11 133 

C6 97.5 278.75 20.75 113.25  V 6 90 340 15 144 

C7 97.5 278.75 60.25 39.75  V 7 250 233 22 99 

C8 97.5 278.75 60.25 113.25  V 8 345 187 76 43 

C9 272.5 96.25 20.75 39.75  V 9 52 121 47 21 

C10 272.5 96.25 20.75 113.25  V 10 131 88 66 6 

C11 272.5 96.25 60.25 39.75  T1 78 15 32 12 

C12 272.5 96.25 60.25 113.25  T2 23 22 6 55 

C13 272.5 278.75 20.75 39.75  T3 311 333 77 43 

C14 272.5 278.75 20.75 113.25  T4 45 345 54 143 

C15 272.5 278.75 60.25 39.75  T5 66 132 33 22 

C16 272.5 278.75 60.25 113.25  T6 22 11 11 76 

C17 10 187.5 40.5 76.5  T7 187 17 65 54 

C18 360 187.5 40.5 76.5  T8 243 65 39 57 

C19 185 5 40.5 76.5  T9 11 54 28 88 

C20 185 370 40.5 76.5  T10 82 33 18 91 

C21 185 187.5 1 76.5       

C22 185 187.5 80 76.5       

C23 185 187.5 40.5 3       

C24 185 187.5 40.5 150       

C25 185 187.5 40.5 76.5       

C26 185 187.5 40.5 76.5       

C27 185 187.5 40.5 76.5       

C28 185 187.5 40.5 76.5       

C29 185 187.5 40.5 76.5       

C30 185 187.5 40.5 76.5        

 

3.2.2.2.2.Validation set 

To check the prediction ability of the model after 

optimizing all calibration parameters, avalidation 

set of ten quaternary mixtures (Table 1) was 

prepared in the blank human serum sample (drug-

free).The concentrations of four analytes were 

selected at random from the corresponding 

calibration ranges. All samples were diluted with 

PBS (0.1 mol L-1, pH 2.0) to adjust the pH and 

then appropriate amounts of these diluted samples 

were transferred to the electrochemical cell, and 

the solutions were measured in random order. 

Final concentration of each analyte was obtained 

by multiplying the detected value by the 

appropriate dilution factor. 

 
3.2.2.2.3. Test set 

With the purpose of evaluating the proposed 

method in a very interfering environment such as 

human serum, atest set of tenquaternary mixtures 

(Table 1) was prepared in the actual serum  (see 

Section 2.3.)with random amount of each analyte 

of interest in the same concentration range used 

for calibration. All samples were diluted with 

PBS (0.1 mol L-1, pH 2.0) to adjust the pH and 

then appropriate amounts of these diluted samples 

were transferred to the electrochemical cell, and 

the solutions were measured in random order. 

Final concentration of each analyte was obtained 

by multiplying the detected value by the 

appropriate dilution factor.It should be noted that 

all the samples related to the test set were 

prepared in the actual serum (see Section 2.3) 

which contains AC therefore, the exact 

concentrations of the spiked AC were computed 

by a previous knowledge about the initial amount 

of AC inthe serum which was obtained by 

analyzing the serum with HPLC-UV method prior 

to analyzing by the proposed method in this 

study.  
 

3.2.3. Pretreatment and data arrangement 
Besides the problem arising from the presence of 
severely overlapping analyte profiles, in the 
present study two additional complications may 
occur: (1) interactions among analytes and the 
background interferents present in the serum, 
which may cause signal changes in comparison 
with pure analyte profiles, and (2) sample-to-
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sample potential shifts in the analyte profiles, 
which are common in voltammetric studies.For 
tackling the first problem, it was necessary to 
include the possible interferents in the calibration 
set in order to allow a first order algorithm to 
model the analyte-background interactions before 
prediction on new samples. Concerning the 
second commented problem, some preprocessing 
alternatives were independently applied on the 
electrochemical responses before model building 
and validation [21,32,33,34]. 
In our previous work [21] we pointed out that 
voltammetric performance can be enhanced by 
eliminating noise and background components 
therefore, baseline elimination is a crucial step for 
reducing both complexity and number of the 
unexpected components. Moreover, it was 
demonstrated that the use of signal pre-treatments 
such as baseline- and potential shift-corrections 
improve the quality of first-order voltammetric 
signals and, as a consequence, the performance of 
resolution by first-order algorithms [21]. In the 
next sections, some strategies areexaminedto 
achieving the mentioned aims. 

 
3.2.3.1. Baseline correction 
Baseline correction has been considered as a 
critical step for enhancing the signals and 
reducing the complexity of the analytical data 
[35]. Considering this aim, we used the method 
proposed by Eilers et al. [36] for background 
elimination in two-dimensional signals based on 
asymmetric least squares splines regression 
approach. In the asymmetric least squares method 
[37] the following cost function is minimized: 

2 2 2

i i i i

i i

Q= υ (y -f ) +λ (Δ f ) 
                             (3) 

wherey is the experimental signal, f is a smooth 

approximation of baseline trend (y), ∆ is the 

derivative of f, i denotes successive values of the 
signal, the positive parameter λis a regularization 
parameter that weigh the second term and υare 
weights. The positive deviations from the 
estimated baseline (peaks) have lowυ values 
while the negative deviations (baseline) obtain 
highυ values. In the multidimensional extension 
of baseline correction method, Eilers et al. 
proposed the splines-based approach to 
smoothing instrumental signal (the penalty term 
in Eq. 1). Details of the implementation of the 
mentioned method can be found in the literature 
[36]. 

 
3.2.3.2. Potential shift correction 
For chemometric model building, several 
strategies have been proposed to align shifted 
signals such as chromatograms, 
electropherograms or NIR spectra. One of the 
most popular ones is correlation optimised 
warping (COW) [38,39]. However, this situation 

has been scarcely described for electrochemical 
signals [21]. According to the literature, the shift 
in electrochemical responses can be originated 
from adsorptive phenomena on the electrode 
surface, pH variations in the cell or fluctuations in 
the composition of cell solution, among others 
[20]. 
A basic assumption for application of a 
multivariate calibration model is the data bi-
linearity, which may be compromised by the 
above commented potential shifts. Therefore, the 
DPV signals were aligned towards a target signal 
using COW. The COW algorithm was introduced 
by Nielsen et al. [38] as a method to correct for 
shifts in discrete data signals. It is a piecewise or 
segmented data preprocessing technique that uses 
dynamic programming to align a sample signal 
towards a reference signal by stretching or 
compression of sample segments using linear 
interpolation. First, the segment and slack were 
optimized using a simplex-like optimization 
routine and then mean voltammogram was 
selected as target“signal”.  
The results of baseline and shift corrections are 
shown in Fig. 5. Fig. 5A-C shows the raw DPV 
data recorded for the calibration, validation and 
test sets, respectively. Fig. 5D-Fshow the results 
of baseline-corrected data of calibration, 
validation and test sets, respectively, and as can 
be seen the baselinesare satisfactorily corrected. 
Fig. 5G-I show the results of applying COW for 
data alignment and it confirms the capability of 
COW for aligning the data. The baseline- and 
shift-corrected data was used to model building 
by PLS-1 while the baseline-corrected data 
without shift-correction was used to model 
building by BP-ANN. 
 
3.3. Performance evaluation of PLS-1 and BP-
ANN in blank and actual serum samples 
In MVC calibration, it is usual to have two data 
sets: a calibration set, employed to build the 
regression model, and a validation set to check 
the prediction ability of the model after all 
calibration parameters have been optimized, but 
in this study we are going to determine the 
analytes’ concentrations in actual human serum 
samples which have a very complex matrix due to 
the presence of many interferents present in the 
serum therefore, with the purpose of evaluating 
the method in the presence of interferents, a test 
set was also prepared in anactual human serum 
sample.  
Before calibration with PLS-1, it is usual to assess 
the optimum number of latent variables in order 
to avoid overfitting, by applying the well-known 
cross-validation method described by Haaland 
and Thomas [40].With the purpose of estimating 
the number of optimum latent variables for ACO-
GA-SS-PLS-1 leave-one-sample-out cross-
validation was performed. 
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Fig. 5. (A)-(C): Raw data related to calibration, validation, and test sets, respectively, (D)-(F):Baseline corrected data by 

AsLSSR related to calibration, validation, and test sets, respectively,and (G)-(I): shift corrected data by COW related to 

calibration, validation, and test sets, respectively. 

 

The optimum number of factors is estimated by 

calculating the ratios F (A) = PRESS 

(A<A*)/PRESS (A), where PRESS =Σ (ci,act-

ci,pred)2, A is a trial number of factors, A* 

corresponds to the minimum PRESS, and ci,actand 

ci,pred are the actual and predicted concentrations 

for the ith sample left out of the calibration during 

cross validation, respectively. Then, the number 

of factors leading to a probability of less than 

75% that F> 1 is selected.This analysis led to the 

conclusion that the latter number is 4 for all the 

cases, as expected for this system using a mean 

centering procedure. The presence of non-

linearities which are usually found in 

electrochemical data causes more latent variables 

to model the variability of the data but in the 

present study this limitation was tackled by 

potential shift correction.Then, the PLS-1 

algorithm was run on the calibration, and 

validationsets.According to the results presented 

in Table 2,with very satisfactory values for 

RMSEPs and REPs for the four analytes of 

interest it is apparent that the PLS-1 approach has 

found the correct answer. 
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Table 2. Results of application of PLS-1 and BP-ANN to validation and test sets. 

  PLS-1  BP-ANN 

Validation set AA UA  AC NA   AA UA  AC NA 

V1 19.8 11.9 4.03 5.02  18.85 12.98 4.5 5.4 

V2 45.3 32 55.9 15.99  47.1 34.6 57.3 17.1 

V3 31.8 76 33.6 72.03  34.3 73.2 31.2 74.9 

V4 16.92 11.01 79.2 33.1  18.9 10 76.5 35.6 

V5 54.9 55.1 11.3 133  55.4 52.1 10.2 137.9 

V6 90.1 340.1 14.9 144  92.3 349.9 14.1 152.6 

V7 250.3 234.1 21.6 99.1  252.3 238.7 20.1 104.5 

V8 345.4 188.1 76.5 43.01  346.7 190.9 73.2 47.8 

V9 52.6 120.1 47.9 21.01  54.9 126.4 49.6 24.3 

V10 132.03 87.5 65.8 6.02  138.5 90.8 68.9 5.02 

RMSEP () 0.5164 0.5924 0.6301 0.0469  3.0777 4.5571 1.9773 4.2385 

REP () 0.4985 0.5129 1.5482 0.0820  2.9707 3.9456 4.8584 7.4099 

  PLS-1  BP-ANN 

Test set AA UA  AC NA   AA UA  AC NA 

T1 78.2 15.2 32.4 11.9  80.1 16.3 30.1 10.2 

T2 23.2 22.3 5.9 55.07  21.1 24.3 7.1 58.8 

T3 311.8 333.6 77.3 42.9  307.3 339.8 75.2 46.3 

T4 44.2 345.3 53.5 142.9  43.1 349.9 42.3 140.1 

T5 65.1 132.1 32.6 21.9  64.2 138.9 31.2 19.3 

T6 21.7 11.2 10.8 75.9  20.1 13.2 9.9 79.9 

T7 188.5 17.2 64.3 53.2  190.8 19.4 63.2 51.1 

T8 244.1 65.6 38.5 56.4  249.6 62.3 37.8 53.2 

T9 11.4 53.2 27.8 87.8  12.1 52.1 26.2 91.2 

T10 82.4 32.4 17.66 90.8  85.9 31.1 16.9 88.8 

RMSEP () 0.7771 0.4505 0.4007 0.3368  3.2648 3.8723 3.9815 3.1210 

REP ()  0.7276 0.4387  1.1038  0.5255     3.0569 3.7705  10.9685  4.8609  

 

Table 3. ANN training results for all data sets.        

AA Value 

Architecture (input-hidden-output neurons) 2000-05-01 

Number of training epoch 450-1200 

Learning rate 0.5 

Momentum 0.5 

UA Value 

Architecture (input-hidden-output neurons) 2005-04-01 

Number of training epoch 400-8735 

Learning rate 0.5 

Momentum 0.5 

AC Value 

Architecture (input-hidden-output neurons) 2000-06-01 

Number of training epoch 450-10080 

Learning rate 0.5 

Momentum 0.5 

NA Value 

Architecture (input-hidden-output neurons) 2004-06-01 

Number of training epoch 600-9765 

Learning rate 0.5 

Momentum 0.5 
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With the purpose of analyzing the potentiality of 

the evaluated methodology based on DPV data 

processed by PLS-1, a test set of ten quaternary 

mixtures (see Table 1) was prepared in an actual 

serum (see Section 3.2.2.2.3.).According to the 

results presented in Table 2 for the test set, with 

very satisfactory values for RMSEP and REP for 

the four analytes of interest it is apparent that the 

PLS-1 approach has found the correct answer.  

Intrinsically non-linear data can be processed with 

non-linear methods. Therefore BP-ANN was also 

used to predict the validation and test sets using 

the training parameters reported in Table 3. 

According to the results presented in Table 2 for 

both validation and test sets, satisfactory values 

for RMSEP and REP for the four analytes of 

interest were not founded and it shows that the 

BP-ANN approach has not found the correct 

answer.  

 

Therefore, in this study PLS-1 shows better 

results than BP-ANN therefore,for the sake of a 

further investigation into the accuracy of the 

proposed method (PLS-1), 

thepredictedconcentrations of both validation and 

test sets were regressed on the nominal 

concentrations. In this case an ordinary least 

squares (OLS) analysis of predicted 

concentrations versus nominal concentrations was 

applied [41]. The calculated intercept and slope 

were compared with their theoretically expected 

values (intercept = 0, slope = 1), based on the 

elliptical joint confidence region (EJCR) test. If 

the ellipses contain the values 0 and 1 for 

intercept and slope (ideal point), respectively, 

showing the predicted and nominal values do not 

present significant difference at the level of 95% 

confidence and the elliptic size denotes precision 

of the analytical method, smaller size corresponds 

to higher precision [42]. Fig. 6A-Dand Fig. 6F-I 

show the regression of predicted concentrations 

on nominal values based on OLS method 

corresponding to the validation and test sets, 

respectively, and Fig. 6E and Fig. 6J show the 

corresponding ellipses of the EJCR analyses for 

validation and test sets, respectively.As can be 

concluded from Fig. 6A-D and Fig. 6F-I, the 

predictions for AA, UA, AC, and NA in both 

validation and test sets are in good agreement 

with the nominal values. If the EJCRs for 

validation set are analyzed (Fig. 6E), it is notable 

that while the ellipses for AA, UA, and NA 

include the theoretically expected point (ideal 

point), indicating accuracy of the developed 

methodology for these analytes, the ideal point 

falls on the AC ellipse (red ellipse), denoting 

slightly poorer prediction accuracy for AC. But 

all the ellipses in the test set contain the ideal 

point (Fig. 6J) which shows the accurate 

determination of all analytes in test set by the 

developed methodology.The statistical results 

shown in Table 2, with adequate values for 

RMSEPand REP for all analytes, do also support 

this conclusion. 

 

 

 
Fig. 6. (A)-(D)  and (F)-(I): plots for predicted concentrations as a function of nominal values for AA, UA, AC, and NAin 

validation and test set, respectively. (E) and (J):elliptical joint regions (at 95% confidence level) for the slopes and 

intercepts of the regressions for AA (blue ellipse), UA (yellow ellipse), AC (red ellipse), and NA (green ellipse) in 

validation and test set, respectively. Plus point(+) marks the theoretical (0,1) point. 
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4. CONCLUSION 

In the present article, combination of 

electrochemistry with chemometrics led us to 

introduce an efficient analytical method for 

simultaneous determination of AA, UA, AC, and 

NA at a GCE in very interfering media. The four 

studied analytes exhibited a strong voltammetric 

overlapping for the simultaneous analysis of these 

compounds. The overlapping was more 

successfully resolved using PLS-1 with 

preprocessing than BP-ANN. The baseline of the 

DPV signals was successfully removed by an 

efficient chemometric algorithm. Because of the 

non-bilinear behavior of the experimental data, 

the potential shift correction was carried out by 

COW as an efficient chemometric algorithm 

before applying PLS-1.To regard the presence of 

a strong matrix effect which may be caused by the 

possible interferents present in the human serum 

sample, the MVC models were built and validated 

in a blank human serum sample (drug-free) 

provided by a healthy volunteer which allowed us 

to exploiting first-order advantage for the 

simultaneous determination of the four studied 

analytes in very interfering media such as human 

serum samples. Finally, the application of the 

developed method based on PLS-1 to 

simultaneously assay the concentrations of AA, 

UA, AC, and NA in an actual human serum 

sampleallowed to obtain satisfactory results. This 

study allows one to propose the present method as 

a promissory, cheap and accessible alternative for 

routine determination of the concentrations of 

AA, UA, AC, and NA in human serum samples. 
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 چکیده

 یشبکه عصب -شامل پس انتشار یکمومتریکس رهیدو روش چند متغ یبا همکار یاشهیدر سطح الکترود کربن ش یپالس تفاضل یبر اساس ولتامتر یا هیروش تجز کی
 که قاعدتا   یپالس تفاضل یولتامتر یو روش از داده هاو در هر د است کیکلاس یهاکه از روش -1 یباشد و روش حداقل مربعات جزئ یم یخط ریغ یکه از روشها یمصنوع
شوند تا  یم یتوسعه و اعتبار سنج نیو نورآدرنال نوفنیاستام د،یاس کیاور د،یاس کیهمزمان اسکورب یریگاندازه یاست، برا دهیهستند استفاده گرد یخط ریمرتبه اول غ یدادها

 ونیرگرس تمیتوسط الگور یپالس تفاضل یولتامتر یهافیط نهیخط زم دهد. یشده ارائه م ادی یت  گونه هاغلظ یرا برا یبهتر ینیب شیمشخص گردد که کدام روش پ
 تمیالگور یریبا به کارگ  -1 یاز استفاده از روش حداقل مربعات جزئ شیها، پبودن داده یو مشکل دوخط لیپتانس یی. جابجادیگرد حیمربعات نامتقارن تصح نیکوچکتر
)بدون دارو( ارائه شده توسط  یخال ینمونه سرم انسان کیدر  ییچهارتا ونیبراسیمدل کال کیبه عنوان  رهیچند متغ ونیبراسیشده اصلاح شد. مدل کال نهیبه انحراف یهمبستگ

و با دو مجموعه مستقل از  شد جادیاشود،  جادیموجود در سرم ا یاحتمال یاهکه ممکن است توسط تداخل یقو کسیاثر ماتر کیدر نظر گرفتن وجود  یداوطلب سالم برا کی
 کیهمزمان همزمان اسکورب یریاندازه گ یبرا -1 یشد.  در نهایت، روش حداقل مربعات جزئ شیو آزما یاعتبارسنج یسرم انسان یو واقع یخال یهادر نمونه هاتیمخلوط آنال

 یشبکه عصب -نتایج بهتری را در مقایسه با پس انتشار یمورد بررس یانو هم در نمونه سرم انس شاهد یهم در نمونه سرم انسان نیو نورآدرنال نوفنیاستام د،یاس کیاور د،یاس
 نشان داد. یمصنوع
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