با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه شیمی، دانشگاه پیام نور، صندوق پستی 4697-19395 تهران، ایران

2 گروه زیست‌شناسی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

3 مرکز تحقیقات آنالیز دارویی، دانشگاه علوم پزشکی تبریز، تبریز، ایران

چکیده

چکیده
دانوفلوکساسین (DNF)، یک فلوروکینولون مصنوعی، به طور گسترده‌ای به عنوان یک عامل ضد باکتری در برابر طیف گسترده‌ای از عوامل بیماری زا استفاده می‌شود. در مطالعه حاضر، اثرات دانوفلوکساسین بر ساختار آلبومین سرم گاوی (BSA) با استفاده از تکنیک‌های طیف‌سنجی جذبی UV-Vis و فلوئورسانس و روش‌های داکینگ مولکولی در دماهای مختلف مورد بررسی قرار گرفت. نتایج به‌دست‌آمده از مطالعات جذب UV-Vis نشان داد که ریزمحیط باقی‌مانده‌های فلوروفور پس از برهم‌کنش با دانوفلوکساسین تغییر قابل‌توجهی نمی‌کند. همچنین، مطالعات فلورومتری تشکیل کمپلکس BSA-DNF و خاموش‌شدن فلوئورسانس آلبومین سرم گاوی را در حضور دانوفلوکساسین نشان داد. تعداد محل‌های اتصال و ثابت‌های اتصال به ترتیب 1~ و در مرتبه 103 محاسبه شد. با توجه به پارامترهای ترمودینامیکی، نیروهای واندروالسی و پیوند هیدروژنی نقش اصلی را در تشکیل کمپلکس BSA-DNF ایفا می‌کنند که یک فرآیند خود به خودی می‌باشد.. فاصله اتصال بین دانوفلوکساسین و آلبومین سرم گاوی با روش انتقال انرژی تشدید فورستر محاسبه شد. نتایج داکینگ مولکولی با داده‌های ترمودینامیکی و طیف‌سنجی مطابقت داشت و مکانیسم اتصال دانوفلوکساسین به آلبومین سرم گاوی را تأیید کرد.

کلیدواژه‌ها

  • Choudhury, S.R. Patel, and A. Ghosh, Selective detection of human serum albumin by near-infrared emissive fluorophores: Insights into structure-property relationship, J. Photochem. Photobiol. A Chem. 376 (2019) 100-107.
  • Paul, N. Sepay, S. Sarkar, P. Roy, S. Dasgupta, P. Saha Sardar, and A. Majhi, Interaction of serum albumins with fluorescent ligand 4-azido coumarin: Spectroscopic analysis and molecular docking studies, New J. Chem. 41 (2017) 15392–15404.
  • Shaghaghi, G. Dehghan, S. Rashtbari, N. Sheibani, and A. Aghamohammadi, Multispectral and computational probing of the interactions between sitagliptin and serum albumin, Spectrochim. Acta A Mol. Biomol. Spectrosc. 223 (2019) 117286.
  • Zhang, H. Deng, and Y. Wang, Comprehensive investigations about the binding interaction of acesulfame with human serum albumin, Spectrochim. Acta A Mol. Biomol. Spectrosc. 237 (2020) 118410.
  • Tang, L. Huang, D. Zhao, C. Sun, and P. Song, Interaction mechanism of flavonoids on bovine serum albumin: Insights from molecular property-binding affinity relationship, Spectrochim. Acta A Mol. Biomol. Spectrosc. 239 (2020) 118519.
  • Shaghaghi, S. Rashtbari, S. Vejdani, G. Dehghan, A. Jouyban, and R. Yekta, Exploring the interactions of a Tb (III)–quercetin complex with serum albumins (HSA and BSA): spectroscopic and molecular docking studies, Luminescence 35 (2020) 512-524.
  • Ghosh, Kaushik; Rathi, Sweety; and Arora, Fluorescence spectral studies on the interaction of fluorescent probes with Bovine Serum Albumin (BSA), J. Lumin. 175 (2016) 135–140.
  • A. Majorek, P.J. Porebski, A. Dayal, M.D. Zimmerman, K. Jablonska, A.J. Stewart, M. Chruszcz, W. Minor, Structural and immunologic characterization of bovine, horse, and rabbit serum albumins, Mol. Immunol. 52 (2012) 174-182.
  • Sengupta, P.S. Sardar, P. Roy, S. Dasgupta, and A. Bose, Investigation on the interaction of Rutin with serum albumins: Insights from spectroscopic and molecular docking techniques, J. Photochem. Photobiol. A Chem. 183 (2018) 101-110.
  • Velic, C. Charlier, M. Popova, T. Jaunet-Lahary, Z. Bouchouireb, S. Henry, P. Weigel, J.Y. Masson, A. Laurent, I. Nabiev, F. Fleury, Interactions of the Rad51 inhibitor DIDS with human and bovine serum albumins: Optical spectroscopy and isothermal calorimetry approaches, Biochimie. 167 (2019) 187-197.
  • Shamsi, T. Mohammad, S. Anwar, M.F. Alajmi, A. Hussain, M.I. Hassan, F. Ahmad, A. Islam, Probing the interaction of Rivastigmine Tartrate, an important Alzheimer's drug, with serum albumin: Attempting treatment of Alzheimer's disease, Int. J. Biol. Macromol. 148 (2020) 533-542.
  • X. Huang, H.-Y. Kim, and C. Dass, Probing the three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry, J. Am. Soc. Mass Spectr. 15 (2004) 1237-1247.
  • Xiong, J. He, H. Yang, P. Tang, B. Tang, Q. Sun,H. Li, Investigation on the interaction of antibacterial drug moxifloxacin hydrochloride with human serum albumin using multi-spectroscopic approaches, molecular docking and dynamical simulation, Rsc Adv. 7 (2017) 48942-48951.
  • -h. Shi, D.-q. Pan, M. Jiang, T.-T. Liu, and Q. Wang, Binding interaction of ramipril with bovine serum albumin (BSA): insights from multi-spectroscopy and molecular docking methods, J. Photochem. Photobiol. B Biol. 164 (2016) 103-111.
  • Wang, C. Huang, M. Jiang, Y. Zhu, J. Wang, J. Chen, and J. Shi, Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking, Spectrochim. Acta A Mol. Biomol. Spectrosc. 156 (2016) 155–163.
  • Patel, F.A. Wani, F. Mahfooz, P. Mishra, and M.A. Siddiquee, Interaction of human serum albumin with diclofenac incorporated in catanionic vesicles, Mater. Today: Proc. 36 (2021) 736-742.
  • Terrado-Campos, K. Tayeb-Cherif, J. Peris-Vicente, S. Carda-Broch, and J. Esteve-Romero, Determination of oxolinic acid, danofloxacin, ciprofloxacin, and enrofloxacin in porcine and bovine meat by micellar liquid chromatography with fluorescence detection, Food chem. 221(2017) 1277-1284.
  • S. Aliabadi, M.F. Landoni, and P. Lees, Pharmacokinetics (PK), pharmacodynamics (PD), and PK-PD integration of danofloxacin in sheep biological fluids, Antimicrob. Agents Chemother. 47 (2003) 626-635.
  • R. Han, J.Yu, and S.-W. Lee, In vitro selection of RNA aptamers that selectively bind danofloxacin, Biochem. Biophys. Res. Commun. 448 (2014) 397-402.
  • Yang, Y. Zhang, J. Li, P. Cheng, T. Xiao, I. Muhammad, H. Yu, R. Liu, X. Zhang, Susceptibility breakpoint for danofloxacin against swine Escherichia coli," BMC Vet. Res. 15 (2019) 1-9.
  • ud din Parray, M.U.H. Mir, N. Dohare, N. Maurya, A.B. Khan, M.S. Borse, R. Patel, Effect of cationic gemini surfactant and its monomeric counterpart on the conformational stability and esterase activity of human serum albumin, J. Mol. Liq. 260 (2018) 65-77, 2018.
  • Nasiri, G. Dehghan, M. Shaghaghi, S. Datmalchi, and M. Iranshahi, Probing the interaction between 7-geranyloxycoumarin and bovine serum albumin: Spectroscopic analyzing and molecular docking study, Spectrochim. Acta A Mol. Biomol. Spectrosc. 254 (2021) 119664.
  • Rashtbari, G. Dehghan, R. Yekta, A. Jouyban, and M. Iranshahi, Effects of resveratrol on the structure and catalytic function of bovine liver catalase (BLC): spectroscopic and theoretical studies, Adv.Pharm. Bull. 7 (2017) 349-357.
  • Sharifi, J.E.N. Dolatabadi, F. Fathi, M. Rashidi, B. Jafari, H. Tajalli, and M.-R. Rashidi, Kinetic and thermodynamic study of bovine serum albumin interaction with rifampicin using surface plasmon resonance and molecular docking methods, J. Biomed. Optics 22 (2017) 1–6.
  • Dohare, A.B. Khan, F. Athar, S.C. Thakur, and R. Patel, Urea‐induced binding between diclofenac sodium and bovine serum albumin: a spectroscopic insight, Luminescence 31 (2016) 945-951.
  • Rashtbari, S. Khataee, M. Iranshahi, A.A. Moosavi-Movahedi, G. Hosseinzadeh, and G. Dehghan, Experimental investigation and molecular dynamics simulation of the binding of ellagic acid to bovine liver catalase: Activation study and interaction mechanism, Int. J. Biol. Macromol. 143 (2020) 850-861.
  • Rashtbari, G. Dehghan, R. Yekta, and A. Jouyban, Investigation of the binding mechanism and inhibition of bovine liver catalase by quercetin: Multi-spectroscopic and computational study, Bioimpacts: Bi 7 (2017) 147-153.
  • T.N. G.G. Ariga, P.N. Naik, and S.A. Chimatadar, Interactions between epinastine and human serum albumin: investigation by fluorescence, UV–vis, FT–IR, CD, lifetime measurement and molecular docking, J. Mol. Struct. 1137 (2017) 485–494.
  • -Y. Liang, J. Pan, A.-M. Bai, and Y.-J. Hu, Insights into the interaction of human serum albumin and carbon dots: Hydrothermal synthesis and biophysical study, Int. J. Biol. Macromol. 149 (2020) 1118-1129.
  • Yekta, G. Dehghan, S. Rashtbari, R. Ghadari, and A.A. Moosavi-Movahedi, The inhibitory effect of farnesiferol C against catalase; Kinetics, interaction mechanism and molecular docking simulation, Int. J. Biol. macromol. 113 (2018) 1258-1265.
  • Dehghan, S. Rashtbari, R. Yekta, and N. Sheibani, Synergistic inhibition of catalase activity by food colorants sunset yellow and curcumin: An experimental and MLSD simulation approach, Chem-Biol.Interact. 311 (2019) 108746.
  • A. Wani, A.H.Bakheit. A. A.Al-Majed, N. Altwaijry, A. Baquaysh, A. Aljuraisy, and S. Zargar, Binding and drug displacement study of colchicine and bovine serum albumin in presence of azithromycin using multispectroscopic techniques and molecular dynamic simulation, J. Mol. Liq. 333 (2021) 115934.
  • Khalili and G. Dehghan, A comparative spectroscopic, surface plasmon resonance, atomic force microscopy and molecular docking studies on the interaction of plant derived conferone with serum albumins, J. Lumin. 211 (2019) 193–202.
  • Hasanzadeh, G. Dehghan, M. Shaghaghi, Y. Panahi, A. Jouyban, and R. Yekta, Multispectral and molecular docking studies on the interaction of human serum albumin with iohexol, J. Mol. Liq. 248 (2017) 459-467.
  • Sarnejad, M. Shaghaghi, G. Dehghan, and S. Soltani, Binding of carvedilol to serum albumins investigated by multi-spectroscopic and molecular modeling methods, J. Lum. 176 (2016) 149-158.
  • Ni, S. Su, and S. Kokot, Spectrometric studies on the interaction of fluoroquinolones and bovine serum albumin, Spectrochim. Acta A Mol. Biomol. Spectrosc. 75 (2010) 547-552.
  •  
  • J. Hu, Y.O.Yang, A.M. Bai, W. Li, and Y. Liu, Investigation of the interaction between ofloxacin and bovine serum albumin: spectroscopic approach, J. Solution. Chem. 39 (2010) 709-717
  • Seedher, P.Agrawal, Complexation of fluoroquinolones antibiotics with human serum albumin: A fluorescence quenching study, J. Lumin. 130 (2010) 1841-1848.
  • Q. Lian, J. Lian, G.R. Wang, L. Li, D.Z. Yang, and Y.S. Xue, Investigation of binding between fluoroquinolones and pepsin by fluorescence spectroscopy and molecular simulation, Luminescence 34 (2019) 595-601.