با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

بخش شیمی، دانشگاه پیام نور، تهران، ایران

چکیده

در این مطالعه، یک حسگر الکتروشیمیایی برای اندازه‌گیری همزمان مورفین و فنتانیل بر اساس یک الکترود گرافیتی مغز مداد اصلاح‌شده با ساختار نانوکریستالی نیمه‌رسانا ساخته شد. لایه اول سنسور دارای هسته ای از نقطه کوانتومی سلنید کادمیوم متصل به تیوگلیکولیک اسید(TGA-CdSe) است که توسط لایه دوم، نقطه کوانتومی سولفید روی (ZnS) احاطه شده است. نانولوله های کربنی عامل دار نیز برای تقویت ساختار حسگر (TGA-CdSe/ZnS@FCNT) استفاده شده است. اندازه‌گیری‌ها با ولتامتری پالس تفاضلی و ولتامتری چرخه‌ای انجام شد. سنتز نانوساختارها توسط FTIR، EDX، SEM و XRD تأیید شد. به منظور بهینه سازی عوامل موثر در عملکرد این سنسور، از طرح آرایه متعامد تاگوچی (OA16) استفاده شده است. ولتاموگرام‌های ولتامتری چرخه‌ای پیک‌های اکسیداسیون برگشت‌ناپذیر را در پتانسیل‌های 9/0 ولت و 38/0 ولت برای فنتانیل و مورفین نشان دادند. ضرایب انتشار به دست آمده بر روی سطح الکترود توسط کرونوآمپرومتری6-10 ×84/3 سانتی­متر مربع بر ثانیه و 6-10 ×615/1 سانتی­متر مربع بر ثانیه برای مورفین و فنتانیل به ترتیب بود. در شرایط بهینه، محدوده غلظت خطی و حد تشخیص مورفین 100-08/0 میکرومولار و 024/0 میکرومولار بود. برای فنتانیل دو محدوده خطی 8-02/0 میکرو مولار، 100-8 میکرومولار و 006/0 میکرومولار به دست آمد. سنسور ساخته شده می تواند به خوبی برای اندازه­گیری همزمان مورفین و فنتانیل در نمونه­های بیولوژیکی با بازیابی نسبی قابل قبول در محدوده 10-3/98 استفاده شود.

کلیدواژه‌ها

  • Gurbet, S. Goren,S. Sahin, N.Uckunkaya and G.Korfali,Comparison of analgesic effects of morphine, fentanyl, and remifentanil with intravenous patient-controlled analgesia after cardiac surgery, J. Cardiothorac. Vasc. Anesth., 18 (2004) 755-758.
  • Garcia del Pozo, A.Carvajal, J.M. Viloria, A.Velasco, V.Garcia del Pozo, Trends in the consumption of opioid analgesics in Spain. Higher increases as fentanyl replaces morphine, Eur. J. Clin. Pharmacol., 64 (2008) 411-415.
  • Poklis, Fentanyl: a review for clinical and analytical toxicologists, J. Toxicol. Clin. Toxicol., 33 (1995) 439-447.
  • H.Drummer, Postmortem toxicology of drugs of abuse, Forensic Sci. Int., 142 (2004) 101-113.
  • Levi, J.C. Scott, P.F. White, W.Sadée, Improved radioreceptor assay of opiate narcotics in human serum: application to fentanyl and morphine metabolism, Pharm. Res., 4 (1987) 46-49.
  • Gleba, J. Kim, Determination of morphine, fentanyl and their metabolites in small sample volumes using liquid chromatography tandem mass spectrometry, J. Anal. Toxicol., 44 (2020) 325-330.
  • Bravo, D. Gonzalez,J. Benites, Development and validation of a solid-phase extraction gas chromatography-mass spectrometry method for the simultaneous quantification of opioid drugs in human whole blood and plasma, J. Chil. Chem. Soc., 56 (2011) 799-802.
  • Emara, W.Zarad, M. Kamal, A. Ali, Y.Aboulella, Sensitivity enhancement for direct injection capillary electrophoresis to determine morphine in human serum via in-capillary derivatization, J. Chromatogr. Sci., 57 (2019) 177-185.
  • Rittgen,M.Pütz, R.Zimmermann, Identification of fentanyl derivatives at trace levels with nonaqueous capillary electrophoresis‐electrospray‐tandem mass spectrometry (MS n, n= 2, 3): Analytical method and forensic applications , Electrophoresis, 33 (2012) 1595-1605.
  • Sarwar, T. Aman, Spectrophotometric determination of morphine, Microchem. J., 30 (1984) 304-309.
  • Mirsafavi, M. Moskovits, C. Meinhart, Detection and classification of fentanyl and its precursors by surface-enhanced Raman spectroscopy, Analyst, 145(2020)3440-3446.
  • L. Adcock, C.J. Barrow, N.W. Barnett, X.A. Conlan, C.F.Hogan, P.S. Francis, Chemiluminescence and electrochemiluminescence detection of controlled drugs, Drug Test. Anal ., 3 (2011) 145-160.
  • J. Hance, Displacement Using Fentanyl and Bullet Analysis Using Atomic Absorption Spectroscopy, State University of New York at Albany, 2020.
  • A. Kiyatkin, Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl, Neuropharmacology, 151 (2019) 219-226.
  • Pilehvar, J.Mehta, F.Dardenne, J.Robbens, R.Blust, K.De Wael, Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit, Analytical chemistry, 84(2012) 6753-6758.
  • O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensenand, M.G. Bawendi, (CdSe) ZnS core− shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B, 101 (1997) 9463-9475.
  • Kaseem, K.Hamad, Y.G. Ko, Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review, Eur. Polym. J., 79 (2016) 36-62.
  • Shojaei, S. Shojaei, S.S. Band, A.A.K. Farizhandi, M. Ghoroqi, A. Mosavi, Application of Taguchi method and response surface methodology into the removal of malachite green and auramine-O by NaX nanozeolites, Sci. Rep., 11(2021) 1-13.
  • Stankovich, D. Dikin, G.M. Dommett, E.J. Zimney, E.A. Stach and R. Piner , Graphene−Silica Composite Thin Films as Transparent Conductors, Nano Lett., 7 (2007) 1888–1892.
  • Kaur, S. Bharti, S.Tripathi, Interactions between thioglycolic acid capped CdSe/ZnS nanoparticles and papain, J. Lumin., 195 (2018) 375-384.
  • Sadeghi, A. Motaharian, A.Z. Moghaddam, Electroanalytical determination of sulfasalazine in pharmaceutical and biological samples using molecularly imprinted polymer modified carbon paste electrode, Sens. Actuators B Chem., 168 (2012) 336-344.
  • A. Escamilla-Lara, A.C. Heredia, A. Peña-Alvarez,I.S. Ibarra, E.Barrado and J.A. Rodriguez, Magnetic Solid-Phase Extraction Based on Poly 4-Vinyl Pyridine for HPLC-FLD Analysis of Naproxen in Urine Samples, Molecules, 25 (2020) 2924.
  • R. Rao, G. Padmanabhan, Application of Taguchi methods and ANOVA in optimization of process parameters for metal removal rate in electrochemical machining of Al/5% SiC composites, Int. j. eng. res. appl., 2 (2012) 192-197.
  • Wu, X.Ji, S.Hu,Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin, Bioelectrochemistry, 64 (2004) 91-97.
  • Pelossof, R.Tel-Vered, S.Shimron, I.Willner, Controlling interfacial electron transfer and electrocatalysis by pH- or ion-switchable DNA monolayer-modified electrodes, Chem. Sci., 4 (2013) 1137-1144.
  • Demir, B.Bozal-Palabiyik, B.Uslu, R. Inam,Voltammetric determination of vardenafil on modified electrodesconstructed by graphite, metal oxides and functionalized multi-walled carbon nanotubes. Rev. Roum. Chim., 64 (2019) 45-54.
  • D. Razmi, H. Beitollahi, M.T.Mahani, M.Anjomshoa, TiO2/Fe3O4/multiwalled carbon nanotubes nanocomposite as sensing platform for simultaneous determination of morphine and diclofenac at a carbon paste electrode, Russ. J. Electrochem., 54(2018) 1132-1140.
  • Beitollai, S.Z.Mohammadi,S.Tajik, Electrochemical behavior of Morphine at the surface of magnetic core shell manganese Ferrite nanoparticles modified screen printed electrode and its determination in real samples, Russ. J. Electrochem., 10 (2019) 304-312.
  •  

 COPYRIGHTS

© 2022 by the authors. Lisensee PNU, Tehran, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC BY4.0) (http:/creativecommons.org/licenses/by/4.0)

  • P. Talemi, M.H. Mashhadizadeh,A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified Au electrode, Talanta, 131 (2015) 460-466.

 

 

  • Naghian, E.M.Khosrowshahi, E.Sohouli, F.Ahmadi, M.Rahimi-Nasrabadi, V.Safarifard, A new electrochemical sensor for the detection of fentanyl lethal drug by a screen-printed carbon electrode modified with the open-ended channels of Zn (ii)-MOF, New J. Chem., 44 (2020) 9271-9277.
  • Sohouli, A.H.Keihan, F.Shahdost-Fard, E.Naghian, M.E.Plonska-Brzezinska, M.Rahimi-Nasrabadi, F.Ahmadi, A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl, Mater. Sci. Eng. C ., 110 (2020) 110684.